Home > Backend Development > Python Tutorial > Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

高洛峰
Release: 2016-12-13 13:48:50
Original
1468 people have browsed it

A web crawler is a program that crawls data on the Internet. It can be used to crawl the HTML data of a specific web page. Although we use some libraries to develop a crawler program, using a framework can greatly improve efficiency and shorten development time. Scrapy is written in Python, lightweight, simple and easy to use. Using Scrapy can easily complete the collection of online data. It has completed a lot of work for us without having to expend great efforts to develop it ourselves.

First of all, I need to answer a question.
Q: How many steps does it take to install a website into a crawler?
The answer is simple, four steps:
New Project (Project): Create a new crawler project
Clear Target (Items): Clarify the goals you want to crawl
Create a Spider (Spider): Create a crawler to start crawling web pages
Storage content (Pipeline): Design a pipeline to store crawled content

Okay, now that the basic process has been determined, just complete it step by step.

1. Create a new project (Project)
Hold down the Shift key and right-click in the empty directory, select "Open command window here", and enter the command:

scrapy startproject tutorial
Copy after login

Where tutorial is the project name.
You can see that a tutorial folder will be created, with the directory structure as follows:

tutorial/  
    scrapy.cfg  
    tutorial/  
        __init__.py  
        items.py  
        pipelines.py  
        settings.py  
        spiders/  
            __init__.py  
            ...
Copy after login

The following is a brief introduction to the role of each file:
scrapy.cfg: the project’s configuration file
tutorial/: the project’s Python module, which will be The code quoted here
tutorial/items.py: the project’s items file
tutorial/pipelines.py: the project’s pipelines file
tutorial/settings.py: the project’s settings file
tutorial/spiders/: the directory where the crawler is stored

2. Clear target (Item)
In Scrapy, items are containers used to load crawled content, a bit like Dic in Python, which is a dictionary, but provide some additional protection to reduce errors.
Generally speaking, items can be created using the scrapy.item.Item class, and properties can be defined using the scrapy.item.Field object (which can be understood as a mapping relationship similar to ORM).
Next, we start to build the item model.
First of all, the content we want is:
Name (name)
Link (url)
Description (description)

Modify the items.py file in the tutorial directory and add our own class after the original class.
Because we want to capture the content of the dmoz.org website, we can name it DmozItem:

# Define here the models for your scraped items  
#  
# See documentation in:  
# http://doc.scrapy.org/en/latest/topics/items.html  
  
from scrapy.item import Item, Field  
  
class TutorialItem(Item):  
    # define the fields for your item here like:  
    # name = Field()  
    pass  
  
class DmozItem(Item):  
    title = Field()  
    link = Field()  
    desc = Field()
Copy after login

It may seem a little confusing at first, but defining these items allows you to know your items when using other components what exactly is it.
Item can be simply understood as an encapsulated class object.

3. Make a crawler (Spider)

Making a crawler is generally divided into two steps: crawl first and then fetch.
That is to say, first you need to get all the content of the entire web page, and then take out the parts that are useful to you.
3.1 Crawling
Spider is a class written by the user to crawl information from a domain (or domain group).
They define the list of URLs for downloading, the scheme for tracking links, and the way to parse the content of the web page to extract items.
To build a Spider, you must create a subclass with scrapy.spider.BaseSpider and determine three mandatory attributes:
name: the identification name of the crawler, which must be unique. You must define different names in different crawlers. name.
start_urls: list of crawled URLs. The crawler starts fetching data from here, so the first download of data will start from these URLs. Other sub-URLs will be generated inherited from these starting URLs.
parse(): The parsing method. When calling, pass in the Response object returned from each URL as the only parameter. It is responsible for parsing and matching the captured data (parsing into items) and tracking more URLs.

Here you can refer to the ideas mentioned in the width crawler tutorial to help understand. Tutorial delivery: [Java] Zhihu Chin Episode 5: Using the HttpClient toolkit and width crawler.
That is to say, store the Url and gradually spread it as a starting point, grab all the webpage URLs that meet the conditions, store them and continue crawling.

Let’s write the first crawler, named dmoz_spider.py, and save it in the tutorialspiders directory.
dmoz_spider.py code is as follows:

from scrapy.spider import Spider  
  
class DmozSpider(Spider):  
    name = "dmoz"  
    allowed_domains = ["dmoz.org"]  
    start_urls = [  
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",  
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"  
    ]  
  
    def parse(self, response):  
        filename = response.url.split("/")[-2]  
        open(filename, 'wb').write(response.body)
Copy after login

allow_domains is the domain name range of the search, which is the constraint area of ​​the crawler. It stipulates that the crawler only crawls web pages under this domain name.
As can be seen from the parse function, the last two addresses of the link are taken out and stored as file names.
Then run it and take a look. Hold down shift and right-click in the tutorial directory, open the command window here, enter:

scrapy crawl dmoz
Copy after login
Copy after login

The running result is as shown in the figure:

Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

The error is reported:
UnicodeDecodeError: 'ascii' codec can 't decode byte 0xb0 in position 1: ordinal not in range(128)
I got an error when I ran the first Scrapy project. It was really ill-fated.
There should be a coding problem. I googled and found the solution:
Create a new sitecustomize.py in the Libsite-packages folder of python:

import sys    
sys.setdefaultencoding('gb2312')
Copy after login

Run it again, OK, the problem is solved, take a look at the result:

Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

最后一句INFO: Closing spider (finished)表明爬虫已经成功运行并且自行关闭了。
包含 [dmoz]的行 ,那对应着我们的爬虫运行的结果。
可以看到start_urls中定义的每个URL都有日志行。
还记得我们的start_urls吗?
http://www.dmoz.org/Computers/Programming/Languages/Python/Books
http://www.dmoz.org/Computers/Programming/Languages/Python/Resources
因为这些URL是起始页面,所以他们没有引用(referrers),所以在它们的每行末尾你会看到 (referer: )。
在parse 方法的作用下,两个文件被创建:分别是 Books 和 Resources,这两个文件中有URL的页面内容。

那么在刚刚的电闪雷鸣之中到底发生了什么呢?
首先,Scrapy为爬虫的 start_urls属性中的每个URL创建了一个 scrapy.http.Request 对象 ,并将爬虫的parse 方法指定为回调函数。
然后,这些 Request被调度并执行,之后通过parse()方法返回scrapy.http.Response对象,并反馈给爬虫。

3.2取
爬取整个网页完毕,接下来的就是的取过程了。
光存储一整个网页还是不够用的。
在基础的爬虫里,这一步可以用正则表达式来抓。
在Scrapy里,使用一种叫做 XPath selectors的机制,它基于 XPath表达式。
如果你想了解更多selectors和其他机制你可以查阅资料:点我点我

这是一些XPath表达式的例子和他们的含义
/html/head/title: 选择HTML文档元素下面的 标签。<br/>/html/head/title/text(): 选择前面提到的<title> 元素下面的文本内容<br/>//td: 选择所有 <td> 元素<br/>//div[@class="mine"]: 选择所有包含 class="mine" 属性的div 标签元素<br/>以上只是几个使用XPath的简单例子,但是实际上XPath非常强大。<br/>可以参照W3C教程:点我点我。</p><p>为了方便使用XPaths,Scrapy提供XPathSelector 类,有两种可以选择,HtmlXPathSelector(HTML数据解析)和XmlXPathSelector(XML数据解析)。<br/>必须通过一个 Response 对象对他们进行实例化操作。<br/>你会发现Selector对象展示了文档的节点结构。因此,第一个实例化的selector必与根节点或者是整个目录有关 。<br/>在Scrapy里面,Selectors 有四种基础的方法(点击查看API文档):<br/>xpath():返回一系列的selectors,每一个select表示一个xpath参数表达式选择的节点<br/>css():返回一系列的selectors,每一个select表示一个css参数表达式选择的节点<br/>extract():返回一个unicode字符串,为选中的数据<br/>re():返回一串一个unicode字符串,为使用正则表达式抓取出来的内容</p><p>3.3xpath实验<br/>下面我们在Shell里面尝试一下Selector的用法。</p><p><img src="https://img.php.cn//upload/image/353/298/615/1481607473483397.jpg" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>熟悉完了实验的小白鼠,接下来就是用Shell爬取网页了。<br/>进入到项目的顶层目录,也就是第一层tutorial文件夹下,在cmd中输入:</p><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:python;toolbar:false">scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/</pre><div class="contentsignin">Copy after login</div></div><p>回车后可以看到如下的内容:</p><p><img src="https://img.php.cn//upload/image/439/925/427/1481607511107368.jpg" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>在Shell载入后,你将获得response回应,存储在本地变量 response中。<br/>所以如果你输入response.body,你将会看到response的body部分,也就是抓取到的页面内容:</p><p><img src="https://img.php.cn//upload/image/430/606/291/1481607527678411.jpg" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>或者输入response.headers 来查看它的 header部分:</p><p><img src="https://img.php.cn//upload/image/962/265/546/1481607541777297.jpg" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>现在就像是一大堆沙子握在手里,里面藏着我们想要的金子,所以下一步,就是用筛子摇两下,把杂质出去,选出关键的内容。<br/>selector就是这样一个筛子。<br/>在旧的版本中,Shell实例化两种selectors,一个是解析HTML的 hxs 变量,一个是解析XML 的 xxs 变量。<br/>而现在的Shell为我们准备好的selector对象,sel,可以根据返回的数据类型自动选择最佳的解析方案(XML or HTML)。<br/>然后我们来捣弄一下!~<br/>要彻底搞清楚这个问题,首先先要知道,抓到的页面到底是个什么样子。<br/>比如,我们要抓取网页的标题,也就是<title>这个标签:</p><p><img src="https://img.php.cn//upload/image/630/582/688/1481607561230519.png" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>可以输入:</p><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:python;toolbar:false">sel.xpath(&#39;//title&#39;)</pre><div class="contentsignin">Copy after login</div></div><p>结果就是:</p><p><img src="https://img.php.cn//upload/image/954/992/585/1481607596582683.png" title="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" alt="Writing a Python crawler from scratch - using the Scrapy framework to write a crawler" style="max-width:90%" style="max-width:90%"/></p><p>这样就能把这个标签取出来了,用extract()和text()还可以进一步做处理。<br/>备注:简单的罗列一下有用的xpath路径表达式:<br/>表达式 描述<br/>nodename 选取此节点的所有子节点。<br/>/ 从根节点选取。<br/>// 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。<br/>. 选取当前节点。<br/>.. 选取当前节点的父节点。<br/>@ 选取属性。<br/>全部的实验结果如下,In[i]表示第i次实验的输入,Out[i]表示第i次结果的输出</p><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:python;toolbar:false">In [1]: sel.xpath(&#39;//title&#39;) Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>] In [2]: sel.xpath(&#39;//title&#39;).extract() Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books'] In [3]: sel.xpath('//title/text()') Out[3]: [] In [4]: sel.xpath('//title/text()').extract() Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books'] In [5]: sel.xpath('//title/text()').re('(\w+):') Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

Copy after login

当然title这个标签对我们来说没有太多的价值,下面我们就来真正抓取一些有意义的东西。
使用火狐的审查元素我们可以清楚地看到,我们需要的东西如下:

Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

我们可以用如下代码来抓取这个

  • 标签:

    sel.xpath(&#39;//ul/li&#39;)
    Copy after login

  • 标签中,可以这样获取网站的描述:

    sel.xpath(&#39;//ul/li/text()&#39;).extract()
    Copy after login

    可以这样获取网站的标题:

    sel.xpath(&#39;//ul/li/a/text()&#39;).extract()
    Copy after login
    Copy after login

  • 标签中,可以这样获取网站的描述:

    sel.xpath(&#39;//ul/li/text()&#39;).extract()
    Copy after login

    可以这样获取网站的标题:

    sel.xpath(&#39;//ul/li/a/text()&#39;).extract()
    Copy after login
    Copy after login

    可以这样获取网站的超链接:

    sel.xpath(&#39;//ul/li/a/@href&#39;).extract()
    Copy after login

    当然,前面的这些例子是直接获取属性的方法。
    我们注意到xpath返回了一个对象列表,
    那么我们也可以直接调用这个列表中对象的属性挖掘更深的节点
    (参考:Nesting selectors andWorking with relative XPaths in the Selectors):
    sites = sel.xpath(&#39;//ul/li&#39;)
    for site in sites:
    title = site.xpath('a/text()').extract()
    link = site.xpath('a/@href').extract()
    desc = site.xpath('text()').extract()
    print title, link, desc

    3.4xpath实战
    我们用shell做了这么久的实战,最后我们可以把前面学习到的内容应用到dmoz_spider这个爬虫中。
    在原爬虫的parse函数中做如下修改:

    from scrapy.spider import Spider  
    from scrapy.selector import Selector  
      
    class DmozSpider(Spider):  
        name = "dmoz"  
        allowed_domains = ["dmoz.org"]  
        start_urls = [  
            "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",  
            "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"  
        ]  
      
        def parse(self, response):  
            sel = Selector(response)  
            sites = sel.xpath(&#39;//ul/li&#39;)  
            for site in sites:  
                title = site.xpath('a/text()').extract()  
                link = site.xpath('a/@href').extract()  
                desc = site.xpath('text()').extract()  
                print title
    Copy after login

    注意,我们从scrapy.selector中导入了Selector类,并且实例化了一个新的Selector对象。这样我们就可以像Shell中一样操作xpath了。
    我们来试着输入一下命令运行爬虫(在tutorial根目录里面):

    scrapy crawl dmoz
    Copy after login
    Copy after login

    运行结果如下:

    Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

    果然,成功的抓到了所有的标题。但是好像不太对啊,怎么Top,Python这种导航栏也抓取出来了呢?
    我们只需要红圈中的内容:

    Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

    看来是我们的xpath语句有点问题,没有仅仅把我们需要的项目名称抓取出来,也抓了一些无辜的但是xpath语法相同的元素。
    审查元素我们发现我们需要的

      具有class='directory-url'的属性,
      那么只要把xpath语句改成sel.xpath('//ul[@class="directory-url"]/li')即可
      将xpath语句做如下调整:

      from scrapy.spider import Spider  
      from scrapy.selector import Selector  
        
      class DmozSpider(Spider):  
          name = "dmoz"  
          allowed_domains = ["dmoz.org"]  
          start_urls = [  
              "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",  
              "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"  
          ]  
        
          def parse(self, response):  
              sel = Selector(response)  
              sites = sel.xpath(&#39;//ul[@class="directory-url"]/li&#39;)  
              for site in sites:  
                  title = site.xpath(&#39;a/text()&#39;).extract()  
                  link = site.xpath(&#39;a/@href&#39;).extract()  
                  desc = site.xpath(&#39;text()&#39;).extract()  
                  print title
      Copy after login

      成功抓出了所有的标题,绝对没有滥杀无辜:

      Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

      3.5使用Item
      接下来我们来看一看如何使用Item。
      前面我们说过,Item 对象是自定义的python字典,可以使用标准字典语法获取某个属性的值:

      >>> item = DmozItem()  
      >>> item[&#39;title&#39;] = &#39;Example title&#39;  
      >>> item[&#39;title&#39;]  
      &#39;Example title&#39;
      Copy after login

      作为一只爬虫,Spiders希望能将其抓取的数据存放到Item对象中。为了返回我们抓取数据,spider的最终代码应当是这样:

      from scrapy.spider import Spider  
      from scrapy.selector import Selector  
        
      from tutorial.items import DmozItem  
        
      class DmozSpider(Spider):  
          name = "dmoz"  
          allowed_domains = ["dmoz.org"]  
          start_urls = [  
              "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",  
              "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"  
          ]  
        
          def parse(self, response):  
              sel = Selector(response)  
              sites = sel.xpath(&#39;//ul[@class="directory-url"]/li&#39;)  
              items = []  
              for site in sites:  
                  item = DmozItem()  
                  item[&#39;title&#39;] = site.xpath(&#39;a/text()&#39;).extract()  
                  item[&#39;link&#39;] = site.xpath(&#39;a/@href&#39;).extract()  
                  item[&#39;desc&#39;] = site.xpath(&#39;text()&#39;).extract()  
                  items.append(item)  
              return items
      Copy after login

      4.存储内容(Pipeline)
      保存信息的最简单的方法是通过Feed exports,主要有四种:JSON,JSON lines,CSV,XML。
      我们将结果用最常用的JSON导出,命令如下:

      scrapy crawl dmoz -o items.json -t json
      Copy after login

      -o 后面是导出文件名,-t 后面是导出类型。
      然后来看一下导出的结果,用文本编辑器打开json文件即可(为了方便显示,在item中删去了除了title之外的属性):

      Writing a Python crawler from scratch - using the Scrapy framework to write a crawler

      因为这个只是一个小型的例子,所以这样简单的处理就可以了。
      如果你想用抓取的items做更复杂的事情,你可以写一个 Item Pipeline(条目管道)。
      这个我们以后再慢慢玩^_^

      以上便是python爬虫框架Scrapy制作爬虫抓取网站内容的全部过程了,非常的详尽吧,希望能够对大家有所帮助,有需要的话也可以和我联系,一起进步


  • Related labels:
    source:php.cn
    Statement of this Website
    The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
    Popular Recommendations
    Popular Tutorials
    More>
    Latest Downloads
    More>
    Web Effects
    Website Source Code
    Website Materials
    Front End Template