C++ Template

Dec 13, 2016 pm 02:31 PM
template

Function template

In getting started with C++, many people will come into contact with swap(int&, The similar code for a function like int&) is as follows:

void swap(int&a , int& b) {
    int temp = a;
    a =  b;
    b = temp;
}
Copy after login

But if you want to support the swap function of long, string, and custom class, the code is similar to the above code, but the type is different. At this time, we define the function template of swap. To reuse different types of swap function codes, the declaration form of the function template is as follows:

template <class identifier> function_declaration;
template <typename identifier> function_declaration;
Copy after login

The declaration and definition code of the swap function template is as follows:

//method.h
template<typename T> void swap(T& t1, T& t2);

#include "method.cpp"
Copy after login
//method.cpp

template<typename  T> void swap(T& t1, T& t2) {
    T tmpT;
    tmpT = t1;
    t1 = t2;
    t2 = tmpT;
}
Copy after login

The above is the declaration and definition of the template. How to instantiate the template? Instantiation is something done by the compiler and has nothing to do with programmers. So how to use the above template? The code is as follows:

//main.cpp
#include <stdio.h>
#include "method.h"
int main() {
    //模板方法 
    int num1 = 1, num2 = 2;
    swap<int>(num1, num2);
    printf("num1:%d, num2:%d\n", num1, num2);  
    return 0;
}
Copy after login

The swap function is used here, and the definition of swap must be included, otherwise the compilation will error. This is different from the general function use. Same. So #include must be added to the last line of the method.h file "method.cpp".

Class Template

Consider we write a simple stack class. This stack can support int type, long type, string type, etc. Without using class templates, we have to write more than three stack classes, in which the code is basically Similarly, through class templates, we can define a simple stack template and instantiate it as an int stack, long stack, or string stack as needed.

//statck.h
template <class T> class Stack {
    public:
        Stack();
        ~Stack();
        void push(T t);
        T pop();
        bool isEmpty();
    private:
        T *m_pT;        
        int m_maxSize;
        int m_size;
};

#include "stack.cpp"
Copy after login
//stack.cpp
template <class  T>  Stack<T>::Stack(){
   m_maxSize = 100;      
   m_size = 0;
   m_pT = new T[m_maxSize];
}
template <class T>  Stack<T>::~Stack() {
   delete [] m_pT ;
}
        
template <class T> void Stack<T>::push(T t) {
    m_size++;
    m_pT[m_size - 1] = t;
    
}
template <class T> T Stack<T>::pop() {
    T t = m_pT[m_size - 1];
    m_size--;
    return t;
}
template <class T> bool Stack<T>::isEmpty() {
    return m_size == 0;
}
Copy after login

The above defines a class template - stack. This stack is very simple. It is just to illustrate how to use the class template. It can only support up to 100 elements on the stack. The usage example is as follows:

//main.cpp
#include <stdio.h>
#include "stack.h"
int main() {
    Stack<int> intStack;
    intStack.push(1);
    intStack.push(2);
    intStack.push(3);
    
    while (!intStack.isEmpty()) {
        printf("num:%d\n", intStack.pop());
    }
    return 0;
}
Copy after login

Template parameters
The template can have Type parameters can also have regular type parameters int, or default template parameters, such as

template<class T, T def_val> class Stack{...}
Copy after login

The stack of the above class template has a limitation, that is, it can only support a maximum of 100 elements. We can use template parameters to configure this stack The maximum number of elements. If not configured, set the default maximum value to 100. The code is as follows:

//statck.h
template <class T,int maxsize = 100> class Stack {
    public:
        Stack();
        ~Stack();
        void push(T t);
        T pop();
        bool isEmpty();
    private:
        T *m_pT;        
        int m_maxSize;
        int m_size;
};

#include "stack.cpp"
Copy after login
//stack.cpp
template <class T,int maxsize> Stack<T, maxsize>::Stack(){
   m_maxSize = maxsize;      
   m_size = 0;
   m_pT = new T[m_maxSize];
}
template <class T,int maxsize>  Stack<T, maxsize>::~Stack() {
   delete [] m_pT ;
}
        
template <class T,int maxsize> void Stack<T, maxsize>::push(T t) {
    m_size++;
    m_pT[m_size - 1] = t;
    
}
template <class T,int maxsize> T Stack<T, maxsize>::pop() {
    T t = m_pT[m_size - 1];
    m_size--;
    return t;
}
template <class T,int maxsize> bool Stack<T, maxsize>::isEmpty() {
    return m_size == 0;
}
Copy after login

Usage examples are as follows:

//main.cpp
#include <stdio.h>
#include "stack.h"
int main() {
    int maxsize = 1024;
    Stack<int,1024> intStack;
    for (int i = 0; i < maxsize; i++) {
        intStack.push(i);
    }
    while (!intStack.isEmpty()) {
        printf("num:%d\n", intStack.pop());
    }
    return 0;
}
Copy after login

Template specialization

When we want to define different implementations of templates, we can use template specialization . For example, the stack class template we defined, if it is a char* type stack, we hope to copy all the data of char to the stack class, because only the char pointer is saved, and the memory pointed to by the char pointer may become invalid, and the stack element popped up by the stack The memory pointed to by the char pointer may be invalid. There is also the swap function template we defined. When using container types such as vector or list, if the object saved by the container is large, it will occupy a lot of memory and reduce performance, because a temporary large object needs to be generated to save a, which requires a template. Specialization can solve it.

Function template specialization

Suppose our swap function wants to handle a situation. We have two vectors with many elements. Using the original swap function, execute tmpT = t1 needs to copy all the elements of t1, which takes up a lot of memory and causes performance degradation. So our system solves this problem through the vector.swap function. The code is as follows:

//method.h
template<class T> void swap(T& t1, T& t2);

#include "method.cpp"
Copy after login
#include <vector>
using namespace std;
template<class T> void swap(T& t1, T& t2) {
    T tmpT;
    tmpT = t1;
    t1 = t2;
    t2 = tmpT;
}

template<> void swap(std::vector<int>& t1, std::vector<int>& t2) {
    t1.swap(t2);
}
Copy after login

template<> The prefix indicates that this is a specialization and no template is used when describing it. Parameters, usage examples are as follows: The swap code of

//main.cpp
#include <stdio.h>
#include <vector>
#include <string>
#include "method.h"
int main() {
    using namespace std;
    //模板方法 
    string str1 = "1", str2 = "2";
    swap(str1, str2);
    printf("str1:%s, str2:%s\n", str1.c_str(), str2.c_str());  
    
    vector<int> v1, v2;
    v1.push_back(1);
    v2.push_back(2);
    swap(v1, v2);
    for (int i = 0; i < v1.size(); i++) {
        printf("v1[%d]:%d\n", i, v1[i]);
    }
    for (int i = 0; i < v2.size(); i++) {
        printf("v2[%d]:%d\n", i, v2[i]);
    }
    return 0;
}
Copy after login

vector is still relatively limited. If you want to use template specialization to solve the swap of all vectors, how to do it? You only need to change the following code

template<> void swap(std::vector<int>& t1, std::vector<int>& t2) {
    t1.swap(t2);
}
Copy after login

to

template<class V> void swap(std::vector<V>& t1, std::vector<V>& t2) {
    t1.swap(t2);
}
Copy after login

That’s it, other codes remain unchanged.

Class template specialization

Please look at the compare code below:

//compare.h
template <class T>
 class compare
 {
  public:
  bool equal(T t1, T t2)
  {
       return t1 == t2;
  }
};
Copy after login
#include <iostream>
#include "compare.h"
 int main()
 {
  using namespace std;
  char str1[] = "Hello";
  char str2[] = "Hello";
  compare<int> c1;
  compare<char *> c2;   
  cout << c1.equal(1, 1) << endl;        //比较两个int类型的参数
  cout << c2.equal(str1, str2) << endl;   //比较两个char *类型的参数
  return 0;
 }
Copy after login

When comparing two integers, the equal method of compare is correct, but when the template parameter of compare is char*, the template cannot work, so I modified it. As follows:

//compare.h
#include <string.h>
template <class T>
 class compare
 {
  public:
  bool equal(T t1, T t2)
  {
       return t1 == t2;
  }
};
   

template<>class compare<char *>  
{
public:
    bool equal(char* t1, char* t2)
    {
        return strcmp(t1, t2) == 0;
    }
};
Copy after login

main.cpp file remains unchanged and this code can work normally.

Template type conversion

Do you still remember our customized Stack template? In our program, suppose we define the Shape and Circle classes, the code is as follows:

//shape.h
class Shape {

};
class Circle : public Shape {
};
Copy after login


Then we hope to use it like this:

//main.cpp
#include <stdio.h>
#include "stack.h"
#include "shape.h"
int main() {
    Stack<Circle*> pcircleStack;
    Stack<Shape*> pshapeStack;
    pcircleStack.push(new Circle);
    pshapeStack = pcircleStack;
    return 0;
}
Copy after login
Copy after login

This cannot be compiled because Stack is not the parent class of Stack. However, we want the code to work like this, so we have to define the conversion operator. The Stack code is as follows:

//statck.h
template <class T> class Stack {
    public:
        Stack();
        ~Stack();
        void push(T t);
        T pop();
        bool isEmpty();
        template<class T2>  operator Stack<T2>();
    private:
        T *m_pT;        
        int m_maxSize;
        int m_size;
};

#include "stack.cpp"
Copy after login
template <class  T>  Stack<T>::Stack(){
   m_maxSize = 100;      
   m_size = 0;
   m_pT = new T[m_maxSize];
}
template <class T>  Stack<T>::~Stack() {
   delete [] m_pT ;
}
        
template <class T> void Stack<T>::push(T t) {
    m_size++;
    m_pT[m_size - 1] = t;
    
}
template <class T> T Stack<T>::pop() {
    T t = m_pT[m_size - 1];
    m_size--;
    return t;
}
template <class T> bool Stack<T>::isEmpty() {
    return m_size == 0;
}

template <class T> template <class T2>  Stack<T>::operator Stack<T2>() {
    Stack<T2> StackT2;
    for (int i = 0; i < m_size; i++) {
        StackT2.push((T2)m_pT[m_size - 1]);
    }
    return StackT2;
}
Copy after login
//main.cpp
#include <stdio.h>
#include "stack.h"
#include "shape.h"
int main() {
    Stack<Circle*> pcircleStack;
    Stack<Shape*> pshapeStack;
    pcircleStack.push(new Circle);
    pshapeStack = pcircleStack;
    return 0;
}
Copy after login
Copy after login

In this way, Stack or Stack can be automatically converted to Stack or Stack. If the converted type is Stack to Stack, the compiler will report an error .

Others

A class has no template parameters, but the member function has template parameters. It is feasible. The code is as follows:

class Util {
    public:
        template <class T> bool equal(T t1, T t2) {
            return t1 == t2;
        }
};

int main() {
    Util util;
    int a = 1, b = 2;
    util.equal<int>(1, 2);
    return 0;
}
Copy after login

You can even declare Util's equal as static, the code is as follows:

class Util {
    public:
         template <class T> static bool equal(T t1, T t2) {
            return t1 == t2;
        }
};

int main() {
    int a = 1, b = 2;
    Util::equal<int>(1, 2);
    return 0;
}
Copy after login


Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve 'undefined: template.Must' error in golang? How to solve 'undefined: template.Must' error in golang? Jun 24, 2023 pm 09:00 PM

Go language is an increasingly popular programming language with its concise syntax, efficient performance, and easy development. The Go language provides a powerful template engine - "text/template", but when using it, some people may encounter the "undefined:template.Must" error. The following is a method to solve this error. Import the correct package. When using the "text/template" template engine, you need to import "text/template

Golang and the Template package: creating personalized user interfaces Golang and the Template package: creating personalized user interfaces Jul 18, 2023 am 10:27 AM

Golang and Template package: Create personalized user interface In modern software development, the user interface is often the most direct way for users to interact with the software. In order to provide a user interface that is easy to use and beautiful, developers need flexible tools to create and customize the user interface. In Golang, developers can use the Template package to achieve this goal. This article will introduce the basic usage of Golang and Template packages, and show how to create a personalized user interface through code examples.

Data visualization through Golang's Template package Data visualization through Golang's Template package Jul 17, 2023 am 09:01 AM

Data visualization through Golang's Template package. With the advent of the big data era, data visualization has become one of the important means of information processing and analysis. Data visualization can present data in a concise and intuitive way, helping people better understand and analyze data. In Golang, we can use the Template package to implement data visualization functions. This article will introduce how to use Golang's Template package to achieve data visualization and provide code examples. GolangTem

How to use opsForValue of RedisTemplate How to use opsForValue of RedisTemplate Jun 03, 2023 am 08:55 AM

Use of the opsForValue() method in Redis 1. set(Kkey, Vvalue) adds a string type value, key is the key, and value is the value. redisTemplate.opsForValue().set("stringValue","bbb"); 2. get(Objectkey) gets the value corresponding to the key key. StringstringValue=redisTemplate.opsForValue().get("key")3. append(Kkey,St

Golang and the Template package: building a powerful front-end development toolbox Golang and the Template package: building a powerful front-end development toolbox Jul 19, 2023 pm 02:43 PM

Golang and the Template package: Building a powerful front-end development toolbox In today's software development, front-end development is becoming more and more important throughout the project. In order to provide an elegant and reliable front-end development solution, we can use the Golang language and its built-in Template package. This article will introduce how to use Golang and the Template package to build a powerful front-end development toolbox. 1. Golang: Efficient and easy-to-use programming language Golang is a modern

Golang and Template package: quickly develop a convenient front-end interface Golang and Template package: quickly develop a convenient front-end interface Jul 17, 2023 pm 08:57 PM

Golang and Template package: quickly develop convenient front-end interface In modern Web development, the development of front-end interface is an important and indispensable link. The design of the front-end interface not only needs to be beautiful, but also needs to have a good user experience. However, the traditional front-end development process often requires a lot of time and effort. Fortunately, Golang provides the Template package, which is designed to help developers quickly build convenient front-end interfaces. Golang is an efficient, concise, concurrent, statically typed

How SpringBoot uses RedisTemplate to operate Redis data types How SpringBoot uses RedisTemplate to operate Redis data types Jun 04, 2023 am 09:43 AM

Spring encapsulates RedisTemplate to operate Redis, which supports all Redis native APIs. Operation methods for five data structures are defined in RedisTemplate. opsForValue(): operates on strings. opsForList(): Operation list. opsForHash(): operates hash. opsForSet(): Operation set. opsForZSet(): operates an ordered set. Below are examples to understand and apply these methods. What needs special attention here is that the data must be cleared after running the above method, otherwise running it multiple times will result in repeated data operations. (1) Use Maven to add dependency files

Golang and the Template package: building maintainable web applications Golang and the Template package: building maintainable web applications Jul 18, 2023 pm 01:16 PM

Golang and Template package: Building maintainable web applications Introduction: In modern web application development, template engines play a very important role. They enable developers to easily dynamically render data into HTML templates to produce visual web pages. This article will introduce the Template package in Golang and its application in building maintainable web applications. 1. Introduction to the Template package. The Template package in Golang is a powerful and flexible template.

See all articles