Home > php教程 > PHP开发 > python pickle module

python pickle module

高洛峰
Release: 2016-12-16 11:36:37
Original
1140 people have browsed it

Persistence means keeping objects, even between multiple executions of the same program. Through this article, you will get an overview of the various persistence mechanisms for Python objects, from relational databases to Python's pickle and other mechanisms. In addition, it will also give you a deeper understanding of Python's object serialization capabilities.

What is persistence?

The basic idea of ​​persistence is simple. Suppose you have a Python program, perhaps a program that manages daily to-do items, and you want to save application objects (to-do items) between executions of the program. In other words, you want to store the object on disk for easy retrieval later. This is persistence. There are several ways to achieve this, each with its own pros and cons.

For example, object data can be stored in a text file in a certain format, such as a CSV file. Or you can use a relational database such as Gadfly, MySQL, PostgreSQL or DB2. These file formats and databases are excellent, and Python has robust interfaces to all of these storage mechanisms.

These storage mechanisms all have one thing in common: the stored data is independent of the objects and programs that operate on the data. The advantage of this is that the data can be used as a shared resource for other applications to use. The disadvantage is that in this way, other programs can be allowed to access the object's data, which violates the object-oriented encapsulation principle - that is, the object's data can only be accessed through the object's own public interface.

Also, for some applications, the relational database approach may not be very ideal. In particular, relational databases don't understand objects. In contrast, a relational database imposes its own type system and relational data model (tables), each table containing a set of tuples (rows), each row containing a fixed number of statically typed fields (columns). If your application's object model cannot be easily converted to a relational model, you will have difficulty mapping objects to tuples and tuples back to objects. This difficulty is often called the impedence-mismatch problem.

Object persistence

If you want to store Python objects transparently without losing information such as their identity and type, you need some form of object serialization: it is a text or binary that converts arbitrarily complex objects into objects representation process. Likewise, it must be possible to restore the serialized form of an object to its original form. In Python, this serialization process is called pickle, and objects can be pickled into strings, files on disk, or any file-like objects, and these strings, files, or any file-like objects can also be unpickled into original object. We'll discuss pickle in detail later in this article.

Assuming you like to save everything as an object, and want to avoid the overhead of converting the object to some kind of non-object based storage; then pickle files can provide these benefits, but sometimes you may need to be more robust than this simple pickle file And something more scalable. For example, pickle alone cannot solve the problems of naming and finding pickle files, nor does it support concurrent access to persistent objects. If you need these features, you'll need to turn to a database like ZODB (Z Object Database for Python). ZODB is a robust, multi-user and object-oriented database system that can store and manage Python objects of arbitrary complexity and supports transaction operations and concurrency control. (See Resources to download ZODB.) Interestingly enough, even ZODB relies on Python's native serialization capabilities, and to use ZODB effectively you must have a good understanding of pickle.

Another interesting solution to the persistence problem is Prevayler, which was originally implemented in Java (see Resources for the developerWorks article on Prevayler). Recently, a group of Python programmers ported Prevayler to Python, renamed PyPerSyst and hosted on SourceForge (see Resources for a link to the PyPerSyst project). The Prevayler/PyPerSyst concept also builds on the native serialization capabilities of the Java and Python languages. PyPerSyst keeps the entire object system in memory and provides disaster recovery by pickling system snapshots to disk from time to time and maintaining a command log through which the latest snapshot can be reapplied. So, while applications using PyPerSyst are limited by available memory, the benefit is that the native object system can fit completely into memory, making it extremely fast and simpler to implement than a database like ZODB, which allows for the number of objects More objects than can be held in memory at the same time.

Now that we have briefly discussed the various methods of storing persistent objects, it is time to explore the pickle process in detail. While we're primarily interested in exploring various ways to save Python objects without having to convert them to some other format, we still have a few things to look at, such as how to efficiently pickle and unpickle simple objects and Complex objects, including instances of custom classes; how to maintain references to objects, including circular and recursive references; and how to handle changes to class definitions so that previously pickled instances can be used without problems. We’ll cover all of these issues later in our discussion of Python’s pickle capabilities.

Some pickled Python

The pickle module and its cousin cPickle provide pickle support to Python. The latter is coded in C, it has better performance and for most applications this module is recommended. We will continue to discuss pickle, but the examples in this article actually utilize cPickle. Since most of these examples will be displayed using the Python shell, let's first show how to import cPickle and reference it as pickle:

>>> import cPickle as pickle

Now that the module has been imported, continue Let's take a look at the pickle interface. The pickle module provides the following function pairs: dumps(object) returns a string containing an object in pickle format; loads(string) returns the object contained in the pickle string; dump(object, file) writes the object to a file , this file can be an actual physical file, but it can also be any file-like object. This object has a write() method that accepts a single string parameter; load(file) returns the object contained in the pickle file.

By default, dumps() and dump() use printable ASCII representation to create pickles. Both take an optional final parameter that, if True , specifies that the pickle be created with a faster and smaller binary representation. The loads() and load() functions automatically detect whether the pickle is in binary or text format.

Listing 1 shows an interactive session using the dumps() and loads() functions just described:

Listing 1. Demonstration of dumps() and loads()

>>> import cPickle as pickle  
>>> t1 = ('this is a string', 42, [1, 2, 3], None)
Copy after login

>>> t1

('this is a string', 42, [1, 2, 3], None)

>>> p1 = pickle.dumps(t1)

>>> p1

"(S'this is a string'/nI42/n(lp1/nI1/naI2/naI3/naNtp2/n."

>>> print p1

(S'this is a string'

I42

(lp1

I1

aI2

aI3

aNtp2

.

>>> t2 = pickle.loads(p1)

>>> t2

('this is a string', 42, [1, 2, 3], None)

>>> p2 = pickle.dumps(t1, True)

>>> p2

'(U/x10this is a stringK*]q/x01(K/x01K/x02K/x03eNtq/x02.'

>>> t3 = pickle.loads(p2)

>>> t3

('this is a string', 42, [1, 2, 3], None)

Note: The text pickle format is very simple and will not be explained here. In fact, we also record all the conventions used in the pickle module. It should be noted that in our examples we are using simple objects, so using the binary pickle format will not show much efficiency in terms of space savings. However, in a real system using complex objects, you will see that using Binary formats can bring significant improvements in size and speed.

Next, we look at some examples using dump() and load(), which operate on files and file-like objects. Similar to what we just saw with dumps() and loads(), the difference is that they have another ability - the dump() function can dump several objects one after another to the same file and then call load(). ) to retrieve these objects in the same order. Listing 2 shows this capability in action:

Listing 2. dump() and load() example

>>> a1 = 'apple'  
>>> b1 = {1: 'One', 2: 'Two', 3: 'Three'}  
>>> c1 = ['fee', 'fie', 'foe', 'fum']  
>>> f1 = file('temp.pkl', 'wb')  
>>> pickle.dump(a1, f1, True)  
>>> pickle.dump(b1, f1, True)  
>>> pickle.dump(c1, f1, True)  
>>> f1.close()  
>>> f2 = file('temp.pkl', 'rb')  
>>> a2 = pickle.load(f2)  
>>> a2  
'apple'  
>>> b2 = pickle.load(f2)  
>>> b2  
{1: 'One', 2: 'Two', 3: 'Three'}  
>>> c2 = pickle.load(f2)  
>>> c2  
['fee', 'fie', 'foe', 'fum']  
>>> f2.close()
Copy after login

The power of Pickle

So far, we’ve covered the basics about pickle. In this section, we discuss some advanced issues that you encounter when you start pickling complex objects, including instances of custom classes. Fortunately, Python can handle this situation easily.

Portability

从空间和时间上说,Pickle 是可移植的。换句话说,pickle 文件格式独立于机器的体系结构,这意味着,例如,可以在 Linux 下创建一个 pickle,然后将它发送到在 Windows 或 Mac OS 下运行的 Python 程序。并且,当升级到更新版本的 Python 时,不必担心可能要废弃已有的 pickle。Python 开发人员已经保证 pickle 格式将可以向后兼容 Python 各个版本。事实上,在 pickle 模块中提供了有关目前以及所支持的格式方面的详细信息.

清单 3. 检索所支持的格式

>>> pickle.format_version  
'1.3'  
>>> pickle.compatible_formats  
['1.0', '1.1', '1.2']
Copy after login

多个引用,同一对象

在 Python 中,变量是对象的引用。同时,也可以用多个变量引用同一个对象。经证明,Python 在用经过 pickle 的对象维护这种行为方面丝毫没有困难,如清单 4 所示:

清单 4. 对象引用的维护

>>> a = [1, 2, 3]  
>>> b = a  
>>> a  
[1, 2, 3]  
>>> b  
[1, 2, 3]  
>>> a.append(4)  
>>> a  
[1, 2, 3, 4]  
>>> b  
[1, 2, 3, 4]  
>>> c = pickle.dumps((a, b))  
>>> d, e = pickle.loads(c)  
>>> d  
[1, 2, 3, 4]  
>>> e  
[1, 2, 3, 4]  
>>> d.append(5)  
>>> d  
[1, 2, 3, 4, 5]  
>>> e  
[1, 2, 3, 4, 5]
Copy after login

循环引用和递归引用

可以将刚才演示过的对象引用支持扩展到 循环引用(两个对象各自包含对对方的引用)和 递归引用(一个对象包含对其自身的引用)。下面两个清单着重显示这种能力。我们先看一下递归引用:

>清单 5. 递归引用

>>> l = [1, 2, 3]  
>>> l.append(l)  
>>> l  
[1, 2, 3, [...]]  
>>> l[3]  
[1, 2, 3, [...]]  
>>> l[3][3]  
[1, 2, 3, [...]]  
>>> p = pickle.dumps(l)  
>>> l2 = pickle.loads(p)  
>>> l2  
[1, 2, 3, [...]]  
>>> l2[3]  
[1, 2, 3, [...]]  
>>> l2[3][3]  
[1, 2, 3, [...]]
Copy after login

现在,看一个循环引用的示例:

清单 6. 循环引用

>>> a = [1, 2]  
>>> b = [3, 4]  
>>> a.append(b)  
>>> a  
[1, 2, [3, 4]]  
>>> b.append(a)  
>>> a  
[1, 2, [3, 4, [...]]]  
>>> b  
[3, 4, [1, 2, [...]]]  
>>> a[2]  
[3, 4, [1, 2, [...]]]  
>>> b[2]  
[1, 2, [3, 4, [...]]]  
>>> a[2] is b  
1  
>>> b[2] is a  
1  
>>> f = file('temp.pkl', 'w')  
>>> pickle.dump((a, b), f)  
>>> f.close()  
>>> f = file('temp.pkl', 'r')  
>>> c, d = pickle.load(f)  
>>> f.close()  
>>> c  
[1, 2, [3, 4, [...]]]  
>>> d  
[3, 4, [1, 2, [...]]]  
>>> c[2]  
[3, 4, [1, 2, [...]]]  
>>> d[2]  
[1, 2, [3, 4, [...]]]  
>>> c[2] is d  
1  
>>> d[2] is c  
1
Copy after login

注意,如果分别 pickle 每个对象,而不是在一个元组中一起 pickle 所有对象,会得到略微不同(但很重要)的结果,如清单 7 所示:

清单 7. 分别 pickle vs. 在一个元组中一起 pickle

>>> f = file('temp.pkl', 'w')  
>>> pickle.dump(a, f)  
>>> pickle.dump(b, f)  
>>> f.close()  
>>> f = file('temp.pkl', 'r')  
>>> c = pickle.load(f)  
>>> d = pickle.load(f)  
>>> f.close()  
>>> c  
[1, 2, [3, 4, [...]]]  
>>> d  
[3, 4, [1, 2, [...]]]  
>>> c[2]  
[3, 4, [1, 2, [...]]]  
>>> d[2]  
[1, 2, [3, 4, [...]]]  
>>> c[2] is d  
0  
>>> d[2] is c  
0
Copy after login

相等,但并不总是相同

正如在上一个示例所暗示的,只有在这些对象引用内存中同一个对象时,它们才是相同的。在 pickle 情形中,每个对象被恢复到一个与原来对象相等的对象,但不是同一个对象。换句话说,每个 pickle 都是原来对象的一个副本:

清单 8. 作为原来对象副本的被恢复的对象

>>> j = [1, 2, 3]  
>>> k = j  
>>> k is j  
1  
>>> x = pickle.dumps(k)  
>>> y = pickle.loads(x)  
>>> y  
[1, 2, 3]  
>>> y == k  
1  
>>> y is k  
0  
>>> y is j  
0  
>>> k is j  
1
Copy after login

同时,我们看到 Python 能够维护对象之间的引用,这些对象是作为一个单元进行 pickle 的。然而,我们还看到分别调用 dump() 会使 Python 无法维护对在该单元外部进行 pickle 的对象的引用。相反,Python 复制了被引用对象,并将副本和被 pickle 的对象存储在一起。对于 pickle 和恢复单个对象层次结构的应用程序,这是没有问题的。但要意识到还有其它情形。

值得指出的是,有一个选项确实允许分别 pickle 对象,并维护相互之间的引用,只要这些对象都是 pickle 到同一文件即可。 pickle 和 cPickle 模块提供了一个 Pickler (与此相对应是 Unpickler ),它能够跟踪已经被 pickle 的对象。通过使用这个 Pickler ,将会通过引用而不是通过值来 pickle 共享和循环引用:

清单 9. 维护分别 pickle 的对象间的引用

>>> f = file('temp.pkl', 'w')  
>>> pickler = pickle.Pickler(f)  
>>> pickler.dump(a)  
<cPickle.Pickler object at 0x89b0bb8>  
>>> pickler.dump(b)  
<cPickle.Pickler object at 0x89b0bb8>  
>>> f.close()  
>>> f = file(&#39;temp.pkl&#39;, &#39;r&#39;)  
>>> unpickler = pickle.Unpickler(f)  
>>> c = unpickler.load()  
>>> d = unpickler.load()  
>>> c[2]  
[3, 4, [1, 2, [...]]]  
>>> d[2]  
[1, 2, [3, 4, [...]]]  
>>> c[2] is d  
1  
>>> d[2] is c  
1
Copy after login

不可 pickle 的对象

一些对象类型是不可 pickle 的。例如,Python 不能 pickle 文件对象(或者任何带有对文件对象引用的对象),因为 Python 在 unpickle 时不能保证它可以重建该文件的状态(另一个示例比较难懂,在这类文章中不值得提出来)。试图 pickle 文件对象会导致以下错误:

清单 10. 试图 pickle 文件对象的结果

>>> f = file(&#39;temp.pkl&#39;, &#39;w&#39;)  
>>> p = pickle.dumps(f)  
Traceback (most recent call last):  
  File "<input>", line 1, in ?  
  File "/usr/lib/python2.2/copy_reg.py", line 57, in _reduce  
    raise TypeError, "can&#39;t pickle %s objects" % base.__name__  
TypeError: can&#39;t pickle file objects
Copy after login

类实例

与 pickle 简单对象类型相比,pickle 类实例要多加留意。这主要由于 Python 会 pickle 实例数据(通常是 _dict_ 属性)和类的名称,而不会 pickle 类的代码。当 Python unpickle 类的实例时,它会试图使用在 pickle 该实例时的确切的类名称和模块名称(包括任何包的路径前缀)导入包含该类定义的模块。另外要注意,类定义必须出现在模块的最顶层,这意味着它们不能是嵌套的类(在其它类或函数中定义的类)。

当 unpickle 类的实例时,通常不会再调用它们的 _init_() 方法。相反,Python 创建一个通用类实例,并应用已进行过 pickle 的实例属性,同时设置该实例的 _class_ 属性,使其指向原来的类。

对 Python 2.2 中引入的新型类进行 unpickle 的机制与原来的略有不同。虽然处理的结果实际上与对旧型类处理的结果相同,但 Python 使用 copy_reg 模块的 _reconstructor() 函数来恢复新型类的实例。

如果希望对新型或旧型类的实例修改缺省的 pickle 行为,则可以定义特殊的类的方法 _getstate_() 和 _setstate_() ,在保存和恢复类实例的状态信息期间,Python 会调用这些方法。在以下几节中,我们会看到一些示例利用了这些特殊的方法。

现在,我们看一个简单的类实例。首先,创建一个 persist.py 的 Python 模块,它包含以下新型类的定义:

清单 11. 新型类的定义

class Foo(object):  
    def __init__(self, value):  
        self.value = value
Copy after login

现在可以 pickle Foo 实例,并看一下它的表示:

清单 12. pickle Foo 实例

>>> import cPickle as pickle  
>>> from Orbtech.examples.persist import Foo  
>>> foo = Foo(&#39;What is a Foo?&#39;)  
>>> p = pickle.dumps(foo)  
>>> print p  
ccopy_reg  
_reconstructor  
p1  
(cOrbtech.examples.persist  
Foo  
p2  
c__builtin__  
object  
p3  
NtRp4  
(dp5  
S&#39;value&#39;  
p6  
S&#39;What is a Foo?&#39;  
sb.
Copy after login

可以看到这个类的名称 Foo 和全限定的模块名称 Orbtech.examples.persist 都存储在 pickle 中。如果将这个实例 pickle 成一个文件,稍后再 unpickle 它或在另一台机器上 unpickle,则 Python 会试图导入 Orbtech.examples.persist 模块,如果不能导入,则会抛出异常。如果重命名该类和该模块或者将该模块移到另一个目录,则也会发生类似的错误。

这里有一个 Python 发出错误消息的示例,当我们重命名 Foo 类,然后试图装入先前进行过 pickle 的 Foo 实例时会发生该错误:

清单 13. 试图装入一个被重命名的 Foo 类的经过 pickle 的实例

>>> import cPickle as pickle  
>>> f = file(&#39;temp.pkl&#39;, &#39;r&#39;)  
>>> foo = pickle.load(f)  
Traceback (most recent call last):  
  File "<input>", line 1, in ?  
AttributeError: &#39;module&#39; object has no attribute &#39;Foo&#39;
Copy after login

在重命名 persist.py 模块之后,也会发生类似的错误:

清单 14. 试图装入一个被重命名的 persist.py 模块的经过 pickle 的实例

>>> import cPickle as pickle  
>>> f = file(&#39;temp.pkl&#39;, &#39;r&#39;)  
>>> foo = pickle.load(f)  
Traceback (most recent call last):  
  File "<input>", line 1, in ?  
ImportError: No module named persist
Copy after login

我们会在下面 模式改进这一节提供一些技术来管理这类更改,而不会破坏现有的 pickle。

特殊的状态方法

前面提到对一些对象类型(譬如,文件对象)不能进行 pickle。处理这种不能 pickle 的对象的实例属性时可以使用特殊的方法( _getstate_() 和 _setstate_() )来修改类实例的状态。这里有一个 Foo 类的示例,我们已经对它进行了修改以处理文件对象属性:

清单 15. 处理不能 pickle 的实例属性

class Foo(object):  
    def __init__(self, value, filename):  
        self.value = value  
        self.logfile = file(filename, &#39;w&#39;)  
    def __getstate__(self):  
        """Return state values to be pickled."""  
        f = self.logfile  
        return (self.value, f.name, f.tell())  
    def __setstate__(self, state):  
        """Restore state from the unpickled state values."""  
        self.value, name, position = state  
        f = file(name, &#39;w&#39;)  
        f.seek(position)  
        self.logfile = f
Copy after login

pickle Foo 的实例时,Python 将只 pickle 当它调用该实例的 _getstate_() 方法时返回给它的值。类似的,在 unpickle 时,Python 将提供经过 unpickle 的值作为参数传递给实例的 _setstate_() 方法。在 _setstate_() 方法内,可以根据经过 pickle 的名称和位置信息来重建文件对象,并将该文件对象分配给这个实例的 logfile 属性。

模式改进

随着时间的推移,您会发现自己必须要更改类的定义。如果已经对某个类实例进行了 pickle,而现在又需要更改这个类,则您可能要检索和更新那些实例,以便它们能在新的类定义下继续正常工作。而我们已经看到在对类或模块进行某些更改时,会出现一些错误。幸运的是,pickle 和 unpickle 过程提供了一些 hook,我们可以用它们来支持这种模式改进的需要。

在这一节,我们将探讨一些方法来预测常见问题以及如何解决这些问题。由于不能 pickle 类实例代码,因此可以添加、更改和除去方法,而不会影响现有的经过 pickle 的实例。出于同样的原因,可以不必担心类的属性。您必须确保包含类定义的代码模块在 unpickle 环境中可用。同时还必须为这些可能导致 unpickle 问题的更改做好规划,这些更改包括:更改类名、添加或除去实例的属性以及改变类定义模块的名称或位置。

类名的更改

要更改类名,而不破坏先前经过 pickle 的实例,请遵循以下步骤。首先,确保原来的类的定义没有被更改,以便在 unpickle 现有实例时可以找到它。不要更改原来的名称,而是在与原来类定义所在的同一个模块中,创建该类定义的一个副本,同时给它一个新的类名。然后使用实际的新类名来替代 NewClassName ,将以下方法添加到原来类的定义中:

清单 16. 更改类名:添加到原来类定义的方法

def __setstate__(self, state):  
    self.__dict__.update(state)  
    self.__class__ = NewClassName
Copy after login

当 unpickle 现有实例时,Python 将查找原来类的定义,并调用实例的 _setstate_() 方法,同时将给新的类定义重新分配该实例的 _class_ 属性。一旦确定所有现有的实例都已经 unpickle、更新和重新 pickle 后,可以从源代码模块中除去旧的类定义。

属性的添加和删除

这些特殊的状态方法 _getstate_() 和 _setstate_() 再一次使我们能控制每个实例的状态,并使我们有机会处理实例属性中的更改。让我们看一个简单的类的定义,我们将向其添加和除去一些属性。这是是最初的定义:

清单 17. 最初的类定义

class Person(object):  
    def __init__(self, firstname, lastname):  
        self.firstname = firstname  
        self.lastname = lastname
Copy after login

假定已经创建并 pickle 了 Person 的实例,现在我们决定真的只想存储一个名称属性,而不是分别存储姓和名。这里有一种方式可以更改类的定义,它将先前经过 pickle 的实例迁移到新的定义:

清单 18. 新的类定义

class Person(object):  
    def __init__(self, fullname):  
        self.fullname = fullname  
    def __setstate__(self, state):  
        if &#39;fullname&#39; not in state:  
            first = &#39;&#39;  
            last = &#39;&#39;  
            if &#39;firstname&#39; in state:  
                first = state[&#39;firstname&#39;]  
                del state[&#39;firstname&#39;]  
            if &#39;lastname&#39; in state:  
                last = state[&#39;lastname&#39;]  
                del state[&#39;lastname&#39;]  
            self.fullname = " ".join([first, last]).strip()  
        self.__dict__.update(state)
Copy after login

在这个示例,我们添加了一个新的属性 fullname ,并除去了两个现有的属性 firstname 和 lastname 。当对先前进行过 pickle 的实例执行 unpickle 时,其先前进行过 pickle 的状态会作为字典传递给 _setstate_() ,它将包括 firstname 和 lastname 属性的值。接下来,将这两个值组合起来,并将它们分配给新属性 fullname 。在这个过程中,我们删除了状态字典中旧的属性。更新和重新 pickle 先前进行过 pickle 的所有实例之后,现在可以从类定义中除去 _setstate_() 方法。

模块的修改

在概念上,模块的名称或位置的改变类似于类名称的改变,但处理方式却完全不同。那是因为模块的信息存储在 pickle 中,而不是通过标准的 pickle 接口就可以修改的属性。事实上,改变模块信息的唯一办法是对实际的 pickle 文件本身执行查找和替换操作。至于如何确切地去做,这取决于具体的操作系统和可使用的工具。很显然,在这种情况下,您会想备份您的文件,以免发生错误。但这种改动应该非常简单,并且对二进制 pickle 格式进行更改与对文本 pickle 格式进行更改应该一样有效。


更多python pickle模块相关文章请关注PHP中文网!


Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Recommendations
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template