Home Backend Development C#.Net Tutorial .NET Factory Method Pattern Explanation

.NET Factory Method Pattern Explanation

Dec 20, 2016 pm 12:53 PM

Introduction to the Factory Method Pattern:

The meaning of the Factory Method pattern is to define a factory interface that creates product objects, deferring the actual creation work to subclasses. The core factory class is no longer responsible for the creation of products. In this way, the core class becomes an abstract factory role, responsible only for the interfaces that specific factory subclasses must implement. The benefit of further abstraction is that the factory method pattern allows the system to operate without modifying the specific factory role. Introducing new products.

Factory method pattern structure diagram:

.NET Factory Method Pattern Explanation

Role classification:

Abstract factory role: It is the core of the factory method pattern and has nothing to do with the application. Any factory class for objects created in the pattern must implement this interface.
Concrete Factory Role: This is a concrete factory class that implements the Abstract Factory interface, contains logic closely related to the application, and is called by the application to create product objects
Abstract Product Role: The super type of the object created by the Factory Method pattern, That is, the common parent class or commonly owned interface of product objects. In the picture above, this character is Light.
Concrete product role: This role implements the interface defined by the abstract product role. A specific product is created by a specific factory, and there is often a one-to-one correspondence between them.

Introducing practical examples:

In the previous blog post Simple Factory Pattern, the following implementation was implemented using the simple factory pattern: If there is a tenant management system, the tenant types in it are variable, and the rent of each tenant type is There are differences in the calculation formulas. For example: the rent amount for type A residents = number of days * unit price + performance * 0.005; the rent amount for type B residents = month * (monthly price + performance * 0.001) Although we have achieved the customer's needs here, but If the customer later needs to add a C-type store and a D-type store, and their algorithm requirements are different, at this time we need to create C and D-type stores, inherit the Ishop interface, implement the methods inside, and also need to Continue to modify the factory class and add cases in switch to capture and create corresponding store objects. Once such a situation occurs, it will be detrimental to the scalability of the program and the maintenance of the project later.

1. Analysis: Stores have common behavioral characteristics and must perform store rent calculation behavior. We abstracted Ishop, which contains the behavior of calculating store rent method to be implemented.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace FactoryEntiy
{
  public interface Ishop
  {
    double Getrent(int days, double dayprice, double performance);
  }
}
Copy after login

2. We implement the methods in the Isho interface and create type A and B stores.

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承商店接口,实现里面的行为方法,即算法
  /// </summary>
  public class Ashop:Ishop
  {
    /// <summary>
    /// /// A类型商店租金额,天数*单价+绩效*0.005
    /// </summary>
    /// <param name="days">天数</param>
    /// <param name="dayprice">每天单价</param>
    /// <param name="performance">日平均绩效</param>
    /// <returns></returns>
    public double Getrent(int days, double dayprice, double performance)
    {
      Console.WriteLine("A商店的租金算法");
      return days * dayprice + performance * 0.01;
    }
  }
}
Copy after login
using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承商店接口,实现里面的行为方法,即算法
  /// </summary>
  public class Bshop:Ishop
  {
    /// <summary>
    /// B类型商店的租金=月份*(每月价格+performance*0.001)
    /// </summary>
    /// <param name="month">月数</param>
    /// <param name="monthprice">月单价</param>
    /// <param name="performance">月平均绩效</param>
    /// <returns></returns>
    public double Getrent(int month, double monthprice, double performance)
    {
      Console.WriteLine("B商店的租金算法");
      return month * (monthprice + performance * 0.001);
    }
  }
}
Copy after login

3. Now consider the circumstances under which to create store entities, calculate rents for different stores, and facilitate future additions and modifications. So we create the IFactroy interface, which contains methods to create store objects to be implemented.

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace FactoryMethod
{
  /// <summary>
  /// 工厂类,创建商店类型实体
  /// </summary>
  public interface IFactory
  {
    Ishop CreateShop();
  }
}
Copy after login

4. Now we can inherit from IFactory and create the corresponding store object in it.

using FactoryEntiy;
using FactoryMethod;
using ProductEnity;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承工厂类,创建A类型商店实体
  /// </summary>
  public class CreateBshop : IFactory
  {
    public Ishop CreateShop()
    {
      return new Ashop();
    }
  }
}
Copy after login
using FactoryEntiy;
using FactoryMethod;
using ProductEnity;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace ProductEnity
{
  /// <summary>
  /// 继承工厂类,创建B类型商店实体
  /// </summary>
  public class CreateAshop : IFactory
  {
    public Ishop CreateShop()
    {
      return new Bshop();
    }
  }
}
Copy after login

5. Then judge based on the current store type, which algorithm should be used for this type of store:

using FactoryEntiy;
using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Reflection;
using System.Text;
 
namespace FactoryMethod.App
{
  class Program
  {
    static void Main(string[] args)
    {
      string shopname = ConfigurationManager.AppSettings["CreateShopClassName"];
      //shopname为创建商店类名称,此处=CreateAshop
      IFactory af = (IFactory)Assembly.Load("ProductEnity").CreateInstance("ProductEnity." + shopname);
      //第一个ProductEnity是dll的名称,第二个ProductEnity是项目的命名空间。
      Ishop As = af.CreateShop(); double total = As.Getrent(30, 300, 2000); //30 天/100元 日平均绩效为2000 
      Console.WriteLine("该A类型商店的租金为:" + total); 
       
      Console.WriteLine("=============");
      IFactory bf = (IFactory)Assembly.Load("ProductEnity").CreateInstance("ProductEnity." + "CreateBshop");
      //CreateBshop可以保存为配置或者存在数据库中,
      //注意该保存字符串应该与项目中创建的类名一样,
      //否则反射的方式会找不到该项目下的类。
      Ishop Bs = bf.CreateShop(); total = Bs.Getrent(30, 300, 2000); //30 天/100元 日平均绩效为2000
      Console.WriteLine("该A类型商店的租金为:" + total);
    }
  }
}
Copy after login

Here we use reflection to create objects, replacing the previous factory class's way of creating objects through switch. It will be helpful for the subsequent addition of new types of stores and algorithm modifications, additions and maintenance. When project requirements change, we only need to add C and D type stores to the project again, inherit the methods in Ishop implementation, and at the same time, add inheritance of the IFactroy interface. Create the corresponding store object and compile the ProductEnity.dll of the project. Later, the C and D type store algorithms can be calculated through reflection without modifying the original engineering code.


The above is the entire content of this article. I hope it will be helpful to everyone’s study. I also hope that everyone will support the php Chinese website.

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to use various symbols in C language How to use various symbols in C language Apr 03, 2025 pm 04:48 PM

The usage methods of symbols in C language cover arithmetic, assignment, conditions, logic, bit operators, etc. Arithmetic operators are used for basic mathematical operations, assignment operators are used for assignment and addition, subtraction, multiplication and division assignment, condition operators are used for different operations according to conditions, logical operators are used for logical operations, bit operators are used for bit-level operations, and special constants are used to represent null pointers, end-of-file markers, and non-numeric values.

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

The difference between multithreading and asynchronous c# The difference between multithreading and asynchronous c# Apr 03, 2025 pm 02:57 PM

The difference between multithreading and asynchronous is that multithreading executes multiple threads at the same time, while asynchronously performs operations without blocking the current thread. Multithreading is used for compute-intensive tasks, while asynchronously is used for user interaction. The advantage of multi-threading is to improve computing performance, while the advantage of asynchronous is to not block UI threads. Choosing multithreading or asynchronous depends on the nature of the task: Computation-intensive tasks use multithreading, tasks that interact with external resources and need to keep UI responsiveness use asynchronous.

The difference between char and wchar_t in C language The difference between char and wchar_t in C language Apr 03, 2025 pm 03:09 PM

In C language, the main difference between char and wchar_t is character encoding: char uses ASCII or extends ASCII, wchar_t uses Unicode; char takes up 1-2 bytes, wchar_t takes up 2-4 bytes; char is suitable for English text, wchar_t is suitable for multilingual text; char is widely supported, wchar_t depends on whether the compiler and operating system support Unicode; char is limited in character range, wchar_t has a larger character range, and special functions are used for arithmetic operations.

How to handle special characters in C language How to handle special characters in C language Apr 03, 2025 pm 03:18 PM

In C language, special characters are processed through escape sequences, such as: \n represents line breaks. \t means tab character. Use escape sequences or character constants to represent special characters, such as char c = '\n'. Note that the backslash needs to be escaped twice. Different platforms and compilers may have different escape sequences, please consult the documentation.

How to convert char in C language How to convert char in C language Apr 03, 2025 pm 03:21 PM

In C language, char type conversion can be directly converted to another type by: casting: using casting characters. Automatic type conversion: When one type of data can accommodate another type of value, the compiler automatically converts it.

What is the function of C language sum? What is the function of C language sum? Apr 03, 2025 pm 02:21 PM

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

How to use char array in C language How to use char array in C language Apr 03, 2025 pm 03:24 PM

The char array stores character sequences in C language and is declared as char array_name[size]. The access element is passed through the subscript operator, and the element ends with the null terminator '\0', which represents the end point of the string. The C language provides a variety of string manipulation functions, such as strlen(), strcpy(), strcat() and strcmp().

See all articles