Home Java javaTutorial Detailed introduction to static binding and dynamic binding in Java

Detailed introduction to static binding and dynamic binding in Java

Dec 26, 2016 pm 04:17 PM

The execution of a Java program requires two steps: compilation and execution (interpretation). At the same time, Java is an object-oriented programming language. When the subclass and the parent class have the same method, and the subclass overrides the method of the parent class, when the program calls the method at runtime, should it call the method of the parent class or the overridden method of the subclass? This should be the question when we first learn Java. problems encountered. Here first we will determine which method to call or the operation of variables is called binding.

There are two binding methods in Java, one is static binding, also called early binding. The other is dynamic binding, also known as late binding.

Difference comparison

1. Static binding occurs at compile time, dynamic binding occurs at runtime
2. Use variables or methods modified with private or static or final, use static Binding. Virtual methods (methods that can be overridden by subclasses) will be dynamically bound according to the runtime object.
3. Static binding is completed using class information, while dynamic binding needs to be completed using object information.
4. The overloaded method is completed using static binding, while the overriding method is completed using dynamic binding.

Example of overloaded method

Here is an example of overloaded method.

public class TestMain {
  public static void main(String[] args) {
      String str = new String();
      Caller caller = new Caller();
      caller.call(str);
  }
  static class Caller {
      public void call(Object obj) {
          System.out.println("an Object instance in Caller");
      }
      
      public void call(String str) {
          System.out.println("a String instance in in Caller");
      }
  }
}
Copy after login

The execution result is

22:19 $ java TestMain
a String instance in in Caller
Copy after login

In the above code, there are two overloaded implementations of the call method. One receives an object of type Object as a parameter, and the other receives String. Object of type as parameter. str is a String object, and all call methods that receive String type parameters will be called. The binding here is static binding based on the parameter type at compile time.

Verification

Just looking at the appearance cannot prove that static binding is performed. You can verify it by using javap to compile it.

22:19 $ javap -c TestMain
Compiled from "TestMain.java"
public class TestMain {
  public TestMain();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return
  public static void main(java.lang.String[]);
    Code:
       0: new           #2                  // class java/lang/String
       3: dup
       4: invokespecial #3                  // Method java/lang/String."<init>":()V
       7: astore_1
       8: new           #4                  // class TestMain$Caller
      11: dup
      12: invokespecial #5                  // Method TestMain$Caller."<init>":()V
      15: astore_2
      16: aload_2
      17: aload_1
      18: invokevirtual #6                  // Method TestMain$Caller.call:(Ljava/lang/String;)V
      21: return
}
Copy after login

saw this line 18: invokevirtual #6 // Method TestMain$Caller.call:(Ljava/lang/String;)V is indeed statically bound, and it is confirmed that the call receives the String object as Parameter caller method.

Example of overriding method

public class TestMain {
  public static void main(String[] args) {
      String str = new String();
      Caller caller = new SubCaller();
      caller.call(str);
  }
  
  static class Caller {
      public void call(String str) {
          System.out.println("a String instance in Caller");
      }
  }
  
  static class SubCaller extends Caller {
      @Override
      public void call(String str) {
          System.out.println("a String instance in SubCaller");
      }
  }
}
Copy after login

The execution result is

22:27 $ java TestMain
a String instance in SubCaller
Copy after login

The above code has an implementation of the call method in Caller. SubCaller inherits Caller and rewrites it. The implementation of the call method. We declared a variable callerSub of type Caller, but this variable points to a SubCaller object. According to the results, it can be seen that it calls the call method implementation of SubCaller instead of the call method of Caller. The reason for this result is that dynamic binding occurs at runtime, and during the binding process it is necessary to determine which version of the call method implementation to call.

Verification

Dynamic binding cannot be directly verified using javap. If it is proved that static binding is not performed, it means that dynamic binding is performed.

22:27 $ javap -c TestMain
Compiled from "TestMain.java"
public class TestMain {
  public TestMain();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return
  public static void main(java.lang.String[]);
    Code:
       0: new           #2                  // class java/lang/String
       3: dup
       4: invokespecial #3                  // Method java/lang/String."<init>":()V
       7: astore_1
       8: new           #4                  // class TestMain$SubCaller
      11: dup
      12: invokespecial #5                  // Method TestMain$SubCaller."<init>":()V
      15: astore_2
      16: aload_2
      17: aload_1
      18: invokevirtual #6                  // Method TestMain$Caller.call:(Ljava/lang/String;)V
      21: return
}
Copy after login

As the above result, 18: invokevirtual #6 // Method TestMain$Caller.call:(Ljava/lang/String;)V Here is TestMain$Caller.call instead of TestMain$SubCaller.call, Because the compile time cannot determine whether to call the implementation of the subclass or the parent class, it can only be left to the dynamic binding at runtime.

When overloading meets overriding

The following example is a bit abnormal. There are two overloads of the call method in the Caller class. What is more complicated is that SubCaller integrates Caller and rewrites this Two methods. In fact, this situation is a compound situation of the above two situations.

The following code will first be statically bound to determine the call method whose parameter is a String object, and then dynamically bound at runtime to determine whether to execute the call implementation of the subclass or the parent class.

public class TestMain {
  public static void main(String[] args) {
      String str = new String();
      Caller callerSub = new SubCaller();
      callerSub.call(str);
  }
  
  static class Caller {
      public void call(Object obj) {
          System.out.println("an Object instance in Caller");
      }
      
      public void call(String str) {
          System.out.println("a String instance in in Caller");
      }
  }
  
  static class SubCaller extends Caller {
      @Override
      public void call(Object obj) {
          System.out.println("an Object instance in SubCaller");
      }
      
      @Override
      public void call(String str) {
          System.out.println("a String instance in in SubCaller");
      }
  }
}
Copy after login

The execution result is

22:30 $ java TestMain
a String instance in in SubCaller
Copy after login

Verification

Since it has been introduced above, I will only post the decompilation result here

22:30 $ javap -c TestMain
Compiled from "TestMain.java"
public class TestMain {
  public TestMain();
    Code:
       0: aload_0
       1: invokespecial #1                  // Method java/lang/Object."<init>":()V
       4: return
  public static void main(java.lang.String[]);
    Code:
       0: new           #2                  // class java/lang/String
       3: dup
       4: invokespecial #3                  // Method java/lang/String."<init>":()V
       7: astore_1
       8: new           #4                  // class TestMain$SubCaller
      11: dup
      12: invokespecial #5                  // Method TestMain$SubCaller."<init>":()V
      15: astore_2
      16: aload_2
      17: aload_1
      18: invokevirtual #6                  // Method TestMain$Caller.call:(Ljava/lang/String;)V
      21: return
}
Copy after login

Curious questions

Isn’t it possible to have dynamic binding?

In fact, theoretically, the binding of certain methods can also be achieved by static binding. For example:

public static void main(String[] args) {
      String str = new String();
      final Caller callerSub = new SubCaller();
      callerSub.call(str);
}
Copy after login

For example, here callerSub holds the object of subCaller and the callerSub variable is final, and the call method is executed immediately. In theory, the compiler can know that the call method of SubCaller should be called by sufficient analysis of the code.

But why is there no static binding?
Assume that our Caller inherits from the BaseCaller class of a certain framework, which implements the call method, and BaseCaller inherits from SuperCaller. The call method is also implemented in SuperCaller.

Suppose BaseCaller and SuperCaller in a certain framework 1.0

static class SuperCaller {
  public void call(Object obj) {
      System.out.println("an Object instance in SuperCaller");
  }
}
  
static class BaseCaller extends SuperCaller {
  public void call(Object obj) {
      System.out.println("an Object instance in BaseCaller");
  }
}
Copy after login

and we use framework 1.0 to implement this. Caller inherits from BaseCaller and calls the super.call method.

public class TestMain {
  public static void main(String[] args) {
      Object obj = new Object();
      SuperCaller callerSub = new SubCaller();
      callerSub.call(obj);
  }
  
  static class Caller extends BaseCaller{
      public void call(Object obj) {
          System.out.println("an Object instance in Caller");
          super.call(obj);
      }
      
      public void call(String str) {
          System.out.println("a String instance in in Caller");
      }
  }
  
  static class SubCaller extends Caller {
      @Override
      public void call(Object obj) {
          System.out.println("an Object instance in SubCaller");
      }
      
      @Override
      public void call(String str) {
          System.out.println("a String instance in in SubCaller");
      }
  }
}
Copy after login

Then we compiled the class file based on version 1.0 of this framework. Assuming that static binding can determine that the super.call of the above Caller is implemented as BaseCaller.call.

Then we again assume that BaseCaller does not rewrite the call method of SuperCaller in version 1.1 of this framework. Then the above assumption that the call implementation that can be statically bound will cause problems in version 1.1, because in version 1.1 super. The call should be implemented using the call method of SuperCall, rather than the call method of BaseCaller determined by static binding.

So, some things that can actually be bound statically are simply bound dynamically in consideration of security and consistency.

Optimization inspiration obtained?

Because dynamic binding needs to determine which version of the method implementation or variable to execute at runtime, it is more time-consuming than static binding.

So without affecting the overall design, we can consider modifying methods or variables with private, static or final.

For more detailed introduction to static binding and dynamic binding in Java, please pay attention to the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, Svelte Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, Svelte Mar 07, 2025 pm 06:09 PM

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue Fixed Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue Fixed Mar 07, 2025 pm 05:52 PM

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache? How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache? Mar 17, 2025 pm 05:44 PM

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

Node.js 20: Key Performance Boosts and New Features Node.js 20: Key Performance Boosts and New Features Mar 07, 2025 pm 06:12 PM

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

How does Java's classloading mechanism work, including different classloaders and their delegation models? How does Java's classloading mechanism work, including different classloaders and their delegation models? Mar 17, 2025 pm 05:35 PM

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

Iceberg: The Future of Data Lake Tables Iceberg: The Future of Data Lake Tables Mar 07, 2025 pm 06:31 PM

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

How to Share Data Between Steps in Cucumber How to Share Data Between Steps in Cucumber Mar 07, 2025 pm 05:55 PM

This article explores methods for sharing data between Cucumber steps, comparing scenario context, global variables, argument passing, and data structures. It emphasizes best practices for maintainability, including concise context use, descriptive

How can I implement functional programming techniques in Java? How can I implement functional programming techniques in Java? Mar 11, 2025 pm 05:51 PM

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability

See all articles