Preface:
We introduced binary search and interpolation search earlier. The interpolation search is an improvement on the binary search. Similarly, the protagonist of this blog, Fibonacci search, is also an improvement on binary search (using the golden section principle).
Since the analysis of this process is more complicated than before, you can Baidu.
Code:
<?php //斐波那契查找 利用黄金分割原理 //算法核心: //1、当$num==$arr[$mid],查找成功 //2、当$num < $arr[$mid],新范围是第$low个到$mid-1个,此时范围个数为Fbi($k-1)-1个 //2、当$num > $arr[$mid],新范围是第$mid+1个到$high个,此时范围个数为Fbi($k-2)-1个 $i = 0; //存储对比的次数 //为了实现该算法,我们首先要准备一个斐波那契数列 //@func 产生斐波那契数列 //@param 数列长度 function Fbi($i){ if($i < 2){ return ($i == 0 ? 0 : 1); } return Fbi($i - 1) + Fbi($i - 2); } //@param 待查找数组 //@param 待搜索的数字 function fbisearch(array $arr,$num){ $count = count($arr); $lower = 0; $high = $count - 1; $k = 0; global $i; //计算$count位于斐波那契数列的位置 while($count > (Fbi($k) - 1)){ $k ++; } //将不满的数值补全,补的数值为数组的最后一位 for($j = $count;$j < Fbi($k) - 1;$j ++){ $arr[$j] = $arr[$count - 1]; } //查找开始 while($lower <= $high){ $i ++; //计算当前分隔的下标 $mid = $lower + Fbi($k - 1) - 1; if($num < $arr[$mid]){ $high = $mid - 1; $k = $k - 1; //斐波那契数列数列下标减一位 }else if($num > $arr[$mid]){ $lower = $mid + 1; $k = $k - 2; //斐波那契数列数列下标减两位 }else{ if($mid <= $count - 1){ return $mid; }else{ return $count - 1; //这里$mid大于$count-1说明是补全数值,返回$count-1 } } } return -1; } $arr = array(0,1,16,24,35,47,59,62,73,88,99); $pos = fbisearch($arr,62); echo $pos."<br>"; echo $i;
The above is the content of PHP ordered table search----Fibonacci search. For more related content, please pay attention to the PHP Chinese website (www.php.cn) !