


Python basic learning code functions and functional programming
def func1(): print 'hello world' res = func1() print type(res) def func2(): return ['xyz',10000,-98] atuple = func2() x,y,z = func2() print x,y,z def func3(): return 'xyz',1000,-98 x,y,z = func3() print x,y,z def func4(): return ['xyz',1000,-98,'xxx'] x,y,z,d = func4() alist = x,y,z,d print alist true = lambda :True print true() sum = lambda x,y:x + y summ = lambda x,y=4:x + y atuplet = lambda *zaz:zaz print atuplet('a',1) adictt = lambda **z:z print adictt(x=3,y=5) from random import randint def functest(arg): return arg % 2 allnums = [] for eachnum in range(9): allnums.append(eachnum) print filter(functest,allnums) allnums = [] for eachnum in range(9): # print eachnum ra = randint(1,99) # print ra allnums.append(ra) #print filter(lambda x:x%2,allnums) #print [i for i in allnums if i%2] print [n for n in [randint(1,99) for i in range(9)] if n%2] print map(lambda x:x+2,[i for i in range(9)]) print map(lambda x:x**2,[int(i) for i in range(9)]) print map(str,[i for i in range(9)]) print map(lambda x,y:x+y,[1,2,3],[1,2,3]) print map(lambda x,y:(x+y,x-y),[1,2,3],[1,2,3]) print map(None,[1,2,3],[1,2,3]) print reduce(lambda x,y:x+y,[i for i in range(3)]) from operator import mul,add from functools import partial add1 = partial(add,1) mul100 = partial(mul,100) basetwo = partial(int,base=2) basetwo.__doc__ = 'convert base 2 string to an int' print basetwo('10010') import Tkinter root = Tkinter.Tk() mybutton = partial(Tkinter.Button,root,fg='white',bg='blue') b1 = mybutton(text='button1') b2 = mybutton(text='button2') qb = mybutton(text='quit',bg='red',command=root.quit) b1.pack() b2.pack() qb.pack(fill=Tkinter.X,expand=True) root.title('pfas!') root.mainloop() is_this_global = 'xyz' def foo(): global is_this_global this_is_local = 'abc' is_this_global = 'def' print this_is_local + is_this_global def foor(): m = 3 def bar(): n = 4 print m + n print m bar() def counter(start=0): count = [start] def incr(): count[0] += 1 return count[0] return incr count = counter() output = '<int %r id=%#0x val=%d>' w = x = y = z = 1 def f1(): x = y = z = 2 def f2(): y = z = 3 def f3(): z = 4 print output%('w',id(w),w) print output%('x',id(x),x) print output%('y',id(y),y) print output%('z',id(z),z) clo = f3.func_closure if clo: print 'f3 closure vars:',[str(c) for c in clo] else: print 'no f3 closure vars' f3() clo = f2.func_closure if clo: print 'f2 closure vars:',[str(c) for c in clo] else: print 'no f2 closure vars' f2() clo = f1.func_closure if clo: print 'f1 closure vars:',[str(c) for c in clo] else: print 'no f1 closure vars' from time import time def logged(when): def log(f,*args,**kargs): print '''called: function:%s args:%s kargs:%s'''%(f,args,kargs) def pre_logged(f): def wrapper(*args,**kargs): log(f,*args,**kargs) return f(*args,**kargs) return wrapper def post_logged(f): def wrapper(*args,**kargs): now = time() try: return f(*args,**kargs) finally: log(f,*args,**kargs) print 'time delta:%s' % (time()-now) return wrapper try: return {'pre':pre_logged,'post':post_logged}[when] except KeyError,e: raise ValueError(e),"must be 'pre' or 'post'" @logged('post') def hello(name): print 'hello,',name hello('world!') x = 10 def ffoo(): y = 5 bar = lambda z:x+z print bar(y) j,k = 1,2 def proc1(): j,k = 3,4 print 'j==%d and k==%d' % (j,k) def proc2(): j = 6 proc1() print 'j==%d and k==%d' % (j,k) k = 7 proc1() print 'j==%d and k==%d' % (j,k) j = 8 proc2() print 'j==%d and k==%d' % (j,k) def max2(arg1,arg2): if arg1 > arg2: return arg1 elif arg1 == arg2: return 'equal' else: return arg2 max22 = lambda a,b:a if a > b else b min22 = lambda a,b:a if a < b else b def heji(a,b): return a+b,a*b x,y = heji(3,4) def mymin(a,b,*num): minnum = min22(a,b) for each in num: minnum = min22(minnum,each) return minnum def mymax(a,b,*num): maxnum = max22(a,b) for each in num: maxnum = max22(maxnum,each) return maxnum trantime = lambda m:(unicode(m / 60),unicode(m % 60)) print ':'.join(trantime(80)) a = ['jia','wo','ma'] b = ['get','hoa','?'] print map(None,a,b) print zip(a,b) def oddyear(y): if (y % 4 == 0 and y % 100 != 0) or y % 400 == 0: return y print filter(oddyear,range(1999,2030)) print [y for y in range(1999,2030) if (y % 4 == 0 and y % 100 != 0) or y % 400 == 0] print reduce(lambda x,y:x+y,range(6)) / float(6) cl = lambda x:x.strip() res = map(cl,open('e:\\thefile.txt')) import time def timeit(arg): starttime = time.clock() result = arg endtime = time.clock() return (result,endtime-starttime) def arg(a,b): return a * b print timeit(arg(3,4)) mult = lambda x,y:x * y print reduce(mult,range(9)[1:])
以上就是Python基础学习代码之函数和函数式编程的内容,更多相关内容请关注PHP中文网(www.php.cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Go language provides two dynamic function creation technologies: closure and reflection. closures allow access to variables within the closure scope, and reflection can create new functions using the FuncOf function. These technologies are useful in customizing HTTP routers, implementing highly customizable systems, and building pluggable components.

In C++ function naming, it is crucial to consider parameter order to improve readability, reduce errors, and facilitate refactoring. Common parameter order conventions include: action-object, object-action, semantic meaning, and standard library compliance. The optimal order depends on the purpose of the function, parameter types, potential confusion, and language conventions.

The key to writing efficient and maintainable Java functions is: keep it simple. Use meaningful naming. Handle special situations. Use appropriate visibility.

1. The SUM function is used to sum the numbers in a column or a group of cells, for example: =SUM(A1:J10). 2. The AVERAGE function is used to calculate the average of the numbers in a column or a group of cells, for example: =AVERAGE(A1:A10). 3. COUNT function, used to count the number of numbers or text in a column or a group of cells, for example: =COUNT(A1:A10) 4. IF function, used to make logical judgments based on specified conditions and return the corresponding result.

Exception handling in C++ can be enhanced through custom exception classes that provide specific error messages, contextual information, and perform custom actions based on the error type. Define an exception class inherited from std::exception to provide specific error information. Use the throw keyword to throw a custom exception. Use dynamic_cast in a try-catch block to convert the caught exception to a custom exception type. In the actual case, the open_file function throws a FileNotFoundException exception. Catching and handling the exception can provide a more specific error message.

When passing a map to a function in Go, a copy will be created by default, and modifications to the copy will not affect the original map. If you need to modify the original map, you can pass it through a pointer. Empty maps need to be handled with care, because they are technically nil pointers, and passing an empty map to a function that expects a non-empty map will cause an error.

There are five common mistakes and pitfalls to be aware of when using functional programming in Go: Avoid accidental modification of references and ensure that newly created variables are returned. To resolve concurrency issues, use synchronization mechanisms or avoid capturing external mutable state. Use partial functionalization sparingly to improve code readability and maintainability. Always handle errors in functions to ensure the robustness of your application. Consider the performance impact and optimize your code using inline functions, flattened data structures, and batching of operations.

Java functional programming advantages include simplicity, composability, concurrency, test-friendliness, and performance. Disadvantages include learning curve, difficulty in debugging, limited flexibility, and performance overhead. Its key features include pure functions without side effects, data processing pipelines, stateless code, and efficient streaming APIs.
