Detailed explanation of three ways to implement multi-threading in Java
The examples in this article share three ways to implement multi-threading in Java for your reference. The specific content is as follows
import java.util.concurrent.Callable; import java.util.concurrent.FutureTask; public class Main { public static void main(String[] args) { //方法一:继承Thread int i = 0; // for(; i < 100; i++){ // System.out.println(Thread.currentThread().getName() + " " + i); // if (i == 5) { // ThreadExtendsThread threadExtendsThread = new ThreadExtendsThread(); // threadExtendsThread.start(); // } // } //方法二:实现Runnable // for(i = 0; i < 100; i++){ // System.out.println(Thread.currentThread().getName() + " " + i); // if (i == 5) { // Runnable runnable = new ThreadImplementsRunnable(); // new Thread(runnable).start(); // new Thread(runnable).start(); // } // } //方法三:实现Callable接口 Callable<Integer> callable = new ThreadImplementsCallable(); FutureTask<Integer> futureTask = new FutureTask<>(callable); for(i = 0; i < 100; i++){ System.out.println(Thread.currentThread().getName() + " " + i); if (i == 5) { new Thread(futureTask).start(); new Thread(futureTask).start(); } } try { System.out.println("futureTask ruturn: " + futureTask.get()); } catch (Exception e) { e.printStackTrace(); } } }
Method 1, inherited from Thread
public class ThreadExtendsThread extends Thread { private int i; @Override public void run() { for(; i < 100; i++) { System.out.println(getName() + " " + i); } } }
The run method is thread execution body, the ThreadExtendsThread object is the thread object.
Method 2, implement the Runnable interface
public class ThreadImplementsRunnable implements Runnable { private int i; @Override public void run() { for(; i < 100; i++){ System.out.println(Thread.currentThread().getName() + " " + i); } } }
The run method is the thread execution body. When used, a New Thread object is used, and the Runnable object is passed to the Thread object as the target. And the same Runnable object can be used as the target of multiple Threads, and these threads all share the instance variables of the Runnable object.
Method 3, implement the Callable interface
import java.util.concurrent.Callable; public class ThreadImplementsCallable implements Callable<Integer> { private int i; @Override public Integer call() throws Exception { for(; i < 100; i++){ System.out.println(Thread.currentThread().getName() + " " + i); } return i; } }
The Callable interface is similar to the Runnable interface, but more powerful than the other. The thread execution body is the call method, which has a return value and can throw exceptions. When used, wrap the Callable object into a FutureTask object and specify the return value type through generics. You can call the get method of FutureTask later to retrieve the execution result.
The above is the entire content of this article, I hope it will be helpful to everyone's study.
For more detailed explanations of the three ways to implement multi-threading in Java, please pay attention to the PHP Chinese website for related articles!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

The article discusses using Maven and Gradle for Java project management, build automation, and dependency resolution, comparing their approaches and optimization strategies.

The article discusses creating and using custom Java libraries (JAR files) with proper versioning and dependency management, using tools like Maven and Gradle.
