


Implementation method of reading image attribute information in Python
This article uses a Python script to read image information. There are several instructions as follows:
1. Error handling is not implemented
2. All information is not read, probably only GPS information, Picture resolution, picture pixels, equipment manufacturer, shooting equipment, etc.
3. After simple modification, it should be possible to violently modify the GPS information of the picture
4. But for pictures that do not have GPS information themselves, The implementation is very complex and requires careful calculation of the offset of each descriptor.
After the script is run, the reading results are as follows
View here and Windows properties The content read by the device is exactly the same
The source code is as follows
# -*- coding:utf-8 -*- import binascii class ParseMethod(object): @staticmethod def parse_default(f, count, offset): pass @staticmethod def parse_latitude(f, count, offset): old_pos = f.tell() f.seek(12 + offset) latitude = [0,0,0] for i in xrange(count): byte = f.read(4) numerator = byte.encode('hex') byte = f.read(4) denominator = byte.encode('hex') latitude[i] = float(int(numerator, 16)) / int(denominator, 16) print 'Latitude:\t%.2f %.2f\' %.2f\"' % (latitude[0], latitude[1], latitude[2]) f.seek(old_pos) @staticmethod def parse_longtitude(f, count, offset): old_pos = f.tell() f.seek(12 + offset) longtitude = [0,0,0] for i in xrange(count): byte = f.read(4) numerator = byte.encode('hex') byte = f.read(4) denominator = byte.encode('hex') longtitude[i] = float(int(numerator, 16)) / int(denominator, 16) print 'Longtitude:\t%.2f %.2f\' %.2f\"' % (longtitude[0], longtitude[1], longtitude[2]) f.seek(old_pos) @staticmethod def parse_make(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(count) a = byte.encode('hex') print 'Make:\t\t' + binascii.a2b_hex(a) f.seek(old_pos) @staticmethod def parse_model(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(count) a = byte.encode('hex') print 'Model:\t\t' + binascii.a2b_hex(a) f.seek(old_pos) @staticmethod def parse_datetime(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(count) a = byte.encode('hex') print 'DateTime:\t' + binascii.a2b_hex(a) f.seek(old_pos) # rational data type, 05 @staticmethod def parse_xresolution(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(4) numerator = byte.encode('hex') byte = f.read(4) denominator = byte.encode('hex') xre = int(numerator, 16) / int(denominator, 16) print 'XResolution:\t' + str(xre) + ' dpi' f.seek(old_pos) @staticmethod def parse_yresolution(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(4) numerator = byte.encode('hex') byte = f.read(4) denominator = byte.encode('hex') xre = int(numerator, 16) / int(denominator, 16) print 'YResolution:\t' + str(xre) + ' dpi' f.seek(old_pos) @staticmethod def parse_exif_ifd(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(2) a = byte.encode('hex') exif_ifd_number = int(a, 16) for i in xrange(exif_ifd_number): byte = f.read(2) tag_id = byte.encode('hex') #print tag_id, byte = f.read(2) type_n = byte.encode('hex') #print type_n, byte = f.read(4) count = byte.encode('hex') #print count, byte = f.read(4) value_offset = byte.encode('hex') #print value_offset value_offset = int(value_offset, 16) EXIF_IFD_DICT.get(tag_id, ParseMethod.parse_default)(f, count, value_offset) f.seek(old_pos) @staticmethod def parse_x_pixel(f, count, value): print 'X Pixels:\t' + str(value) @staticmethod def parse_y_pixel(f, count, value): print 'y Pixels:\t' + str(value) @staticmethod def parse_gps_ifd(f, count, offset): old_pos = f.tell() f.seek(12 + offset) byte = f.read(2) a = byte.encode('hex') gps_ifd_number = int(a, 16) for i in xrange(gps_ifd_number): byte = f.read(2) tag_id = byte.encode('hex') #print tag_id, byte = f.read(2) type_n = byte.encode('hex') #print type_n, byte = f.read(4) count = byte.encode('hex') #print count, byte = f.read(4) value_offset = byte.encode('hex') #print value_offset count = int(count, 16) value_offset = int(value_offset, 16) GPS_IFD_DICT.get(tag_id, ParseMethod.parse_default)(f, count, value_offset) f.seek(old_pos) IFD_dict = { '010f' : ParseMethod.parse_make , '0110' : ParseMethod.parse_model , '0132' : ParseMethod.parse_datetime , '011a' : ParseMethod.parse_xresolution , '011b' : ParseMethod.parse_yresolution , '8769' : ParseMethod.parse_exif_ifd , '8825' : ParseMethod.parse_gps_ifd } EXIF_IFD_DICT = { 'a002' : ParseMethod.parse_x_pixel , 'a003' : ParseMethod.parse_y_pixel } GPS_IFD_DICT = { '0002' : ParseMethod.parse_latitude , '0004' : ParseMethod.parse_longtitude } with open('image.jpg', 'rb') as f: byte = f.read(2) a = byte.encode('hex') print 'SOI Marker:\t' + a byte = f.read(2) a = byte.encode('hex') print 'APP1 Marker:\t' + a byte = f.read(2) a = byte.encode('hex') print 'APP1 Length:\t' + str(int(a, 16)) + ' .Dec' byte = f.read(4) a = byte.encode('hex') print 'Identifier:\t' + binascii.a2b_hex(a) byte = f.read(2) a = byte.encode('hex') print 'Pad:\t\t' + a print print 'Begin to print Header.... ' print 'APP1 Body: ' byte = f.read(2) a = byte.encode('hex') print 'Byte Order:\t' + a byte = f.read(2) a = byte.encode('hex') print '42:\t\t' + a byte = f.read(4) a = byte.encode('hex') print '0th IFD Offset:\t' + a print 'Finish print Header' print 'Begin to print 0th IFD....' print #print 'Total: ', byte = f.read(2) a = byte.encode('hex') interoperability_number = int(a, 16) #print interoperability_number for i in xrange(interoperability_number): byte = f.read(2) tag_id = byte.encode('hex') #print tag_id, byte = f.read(2) type_n = byte.encode('hex') #print type_n, byte = f.read(4) count = byte.encode('hex') #print count, byte = f.read(4) value_offset = byte.encode('hex') #print value_offset count = int(count, 16) value_offset = int(value_offset, 16) # simulate switch IFD_dict.get(tag_id, ParseMethod.parse_default)(f, count, value_offset) print print 'Finish print 0th IFD....'
Summary
The implementation method of using Python to read image attribute information is here That’s basically it. Has everyone learned the lesson? I hope this article will bring some help to everyone's study or work.
For more related articles on how to implement Python to read image attribute information, please pay attention to the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H
