


A brief introduction to C++ design patterns and interpreter pattern
Interpreter mode (Interpreter): Given a language, define a representation of its grammar, and define an interpreter that uses the representation to interpret sentences in the language.
Problems solved by the interpreter pattern: If a particular type of problem occurs frequently enough, it may be worthwhile to express each instance of the problem as a sentence in a simple language. This makes it possible to build an interpreter that solves the problem by interpreting these sentences.
Regular expression is one of its applications. The interpreter defines a grammar for regular expressions and represents a specific regular expression, as well as how to interpret this regular expression.
Four roles:
AbstractExpression: declares an abstract interpretation operation. This interface is shared by all nodes in the abstract syntax tree.
TerminalExpression Terminal expression: implements the interpretation operation associated with the terminal symbols in the grammar.
NonterminalExpression: Nonterminal expression, which implements interpretation operations for nonterminal symbols in the grammar. A specific nonterminal expression class is required for each rule R1, R2...Rn in the grammar.
Context: Contains some global information outside the interpreter.
Mode implementation:
[code]//Context class Context{ private: std::string input; public: std::string Input(std::string in){ input = in; return input; } }; //抽象表达式 class AbstractExpression{ public: virtual void Interpret(Context *context) = 0; }; //终结符表达式 class TerminalExpression: public AbstractExpression{ public: void Interpret(Context *context)override{ std::cout << "TerminalExpression\n"; } }; //非终结符表达式 class NonterminalExpression: public AbstractExpression{ public: void Interpret(Context *context)override{ std::cout << "NonterminalExpression\n"; } };
Client:
[code]//Client int main(){ Context *context = new Context; std::list<AbstractExpression*> list; list.push_back(new TerminalExpression); list.push_back(new NonterminalExpression); list.push_back(new TerminalExpression); list.push_back(new TerminalExpression); for(auto i : list) i->Interpret(context); // Output: // TerminalExpression // NonterminalExpression // TerminalExpression // TerminalExpression return 0; }
Interpreter mode benefits:
Usually there is a language that needs to be interpreted and executed, and the language can be The interpreter mode can be used when the sentences in are represented as an abstract syntax tree.
The above is the content of a brief introduction to the interpreter mode of C++ design patterns. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics





In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.
