Java-Class Library-Guava-Bimap
BiMap provides a new collection type, which provides a two-way associated data structure of key and value.
Normally, when we use Java Map, we often search for value through key, but if the following scenario occurs, we need to write some additional code. First, let's look at the following map structure that represents the identification number and file name.
[code] @Test public void logMapTest(){ Map<Integer,String> logfileMap = Maps.newHashMap(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); System.out.println("logfileMap:"+logfileMap); }
When we need to find the file name by serial number, it is very simple. But if we need to find the serial number through the file name, we have to traverse the map. Of course, we can also write a Map inversion method to help realize the inverted mapping relationship.
[code] /** * 逆转Map的key和value * @param <S> * @param <T> * @param map * @return */ public static <S,T> Map<T,S> getInverseMap(Map<S,T> map) { Map<T,S> inverseMap = new HashMap<T,S>(); for(Entry<S,T> entry: map.entrySet()) { inverseMap.put(entry.getValue(), entry.getKey()); } return inverseMap; }
[code] @Test public void logMapTest(){ Map<Integer,String> logfileMap = Maps.newHashMap(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); System.out.println("logfileMap:"+logfileMap); Map<String,Integer> logfileInverseMap = Maps.newHashMap(); logfileInverseMap=getInverseMap(logfileMap); System.out.println("logfileInverseMap:"+logfileInverseMap); }
The above code can help us realize the map inversion requirements, but there are still some issues we need to consider:
1. How to deal with duplicate values. If not considered, overwriting will occur during inversion.
2. If a new key is added to the inverted map, does the map before inversion need to update a value?
In this case, the number of things other than business that need to be considered increases, and the code written becomes less readable. At this time we can consider using BiMap in Guava.
Bimap
Bimap is very simple to use. For the above usage scenario, we can implement it with very simple code:
[code] @Test public void BimapTest(){ BiMap<Integer,String> logfileMap = HashBiMap.create(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); System.out.println("logfileMap:"+logfileMap); BiMap<String,Integer> filelogMap = logfileMap.inverse(); System.out.println("filelogMap:"+filelogMap); }
When using BiMap, the uniqueness of Value will be required. If the value is repeated, an error will be thrown: java.lang.IllegalArgumentException, for example:
[code] @Test public void BimapTest(){ BiMap<Integer,String> logfileMap = HashBiMap.create(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); logfileMap.put(4,"d.log"); logfileMap.put(5,"d.log"); }
LogfileMap.put(5,"d.log") will throw java.lang.IllegalArgumentException: value already present: d.log error. If we really need to insert repeated value values, we can choose the forcePut method. But what we need to note is that the previous key will also be overwritten.
[code] @Test public void BimapTest(){ BiMap<Integer,String> logfileMap = HashBiMap.create(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); logfileMap.put(4,"d.log"); logfileMap.forcePut(5,"d.log"); System.out.println("logfileMap:"+logfileMap); } 输出: logfileMap:{5=d.log, 3=c.log, 2=b.log, 1=a.log}
Understanding the inverse method
The inverse method will return an inverted BiMap, but note that this inverted map is not a new map object. It implements a view association, so that you can All operations on the reversed map will affect the original map object. For example:
[code] @Test public void BimapTest(){ BiMap<Integer,String> logfileMap = HashBiMap.create(); logfileMap.put(1,"a.log"); logfileMap.put(2,"b.log"); logfileMap.put(3,"c.log"); System.out.println("logfileMap:"+logfileMap); BiMap<String,Integer> filelogMap = logfileMap.inverse(); System.out.println("filelogMap:"+filelogMap); logfileMap.put(4,"d.log"); System.out.println("logfileMap:"+logfileMap); System.out.println("filelogMap:"+filelogMap); }
Implementation class of BiMap
Key-Value Map Impl Value-Key Map Impl Corresponding BiMap
HashMap HashMap HashBiMap
ImmutableMap ImmutableMap ImmutableBiMap
EnumMap EnumMap EnumBiMap
EnumMap HashMap EnumHashBiMap
The above is the content of Java-Class Library-Guava-Bimap. For more related content, please pay attention to the PHP Chinese website (www.php. cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Guide to Square Root in Java. Here we discuss how Square Root works in Java with example and its code implementation respectively.

Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Guide to the Armstrong Number in Java. Here we discuss an introduction to Armstrong's number in java along with some of the code.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is
