Home Java javaTutorial Java collection framework arrayblockingqueue application analysis

Java collection framework arrayblockingqueue application analysis

Jan 23, 2017 am 10:30 AM

Queue
------------
1.ArrayDeque, (array double-ended queue)
2.PriorityQueue, (priority queue)
3.ConcurrentLinkedQueue , (concurrent queue based on linked list)
4.DelayQueue, (delayed blocking queue) (blocking queue implements the BlockingQueue interface)
5.ArrayBlockingQueue, (concurrent blocking queue based on array)
6.LinkedBlockingQueue, (FIFO blocking queue based on linked list)
7.LinkedBlockingDeque, (FIFO double-ended blocking queue based on linked list)
8.PriorityBlockingQueue, (unbounded blocking queue with priority)
9.SynchronousQueue (concurrent synchronization Blocking queue)
-------------------------------------------------- ---------
ArrayBlockingQueue
is a bounded blocking queue backed by an array. This queue sorts elements on a FIFO (first in, first out) basis. The head of the queue is the element that has been in the queue the longest. The tail of the queue is the element that has been in the queue for the shortest time. New elements are inserted into the tail of the queue, and the queue retrieval operation starts from the head of the queue.
This is a typical "bounded buffer area", a fixed-size array that holds elements inserted by the producer and elements extracted by the consumer. Once such a buffer is created, its capacity cannot be increased. Attempting to put an element into a full queue will cause the operation to block; trying to extract an element from an empty queue will cause a similar blocking.
This class supports an optional fairness strategy for ordering waiting producer and consumer threads. By default, this ordering is not guaranteed. However, queues constructed by setting fairness to true allow access to threads in FIFO order. Fairness generally reduces throughput, but also reduces variability and avoids "imbalances."

public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable { 
/** 队列元素 数组 */ 
private final E[] items; 
/** 获取、删除元素时的索引(take, poll 或 remove操作) */ 
private int takeIndex; 
/** 添加元素时的索引(put, offer或 add操作) */ 
private int putIndex; 
/** 队列元素的数目*/ 
private int count; 
/** 锁 */ 
private final ReentrantLock lock; 
/** 获取操作时的条件 */ 
private final Condition notEmpty; 
/** 插入操作时的条件 */ 
private final Condition notFull; 
//超出数组长度时,重设为0 
final int inc(int i) { 
return (++i == items.length)? 0 : i; 
} 
/** 
* 插入元素(在获得锁的情况下才调用) 
*/ 
private void insert(E x) { 
items[putIndex] = x; 
putIndex = inc(putIndex); 
++count; 
notEmpty.signal(); 
} 
/** 
* 获取并移除元素(在获得锁的情况下才调用) 
*/ 
private E extract() { 
final E[] items = this.items; 
E x = items[takeIndex]; 
items[takeIndex] = null; 
takeIndex = inc(takeIndex);//移到下一个位置 
--count; 
notFull.signal(); 
return x; 
} 
/** 
* 删除i位置的元素 
*/ 
void removeAt(int i) { 
final E[] items = this.items; 
// if removing front item, just advance 
if (i == takeIndex) { 
items[takeIndex] = null; 
takeIndex = inc(takeIndex); 
} else { 
// 把i后面的直到putIndex的元素都向前移动一个位置 
for (;;) { 
int nexti = inc(i); 
if (nexti != putIndex) { 
items[i] = items[nexti]; 
i = nexti; 
} else { 
items[i] = null; 
putIndex = i; 
break; 
} 
} 
} 
--count; 
notFull.signal(); 
} 
/** 
*构造方法,指定容量,默认策略(不是按照FIFO的顺序访问) 
*/ 
public ArrayBlockingQueue(int capacity) { 
this(capacity, false); 
} 
/** 
*构造方法,指定容量及策略 
*/ 
public ArrayBlockingQueue(int capacity, boolean fair) { 
if (capacity <= 0) 
throw new IllegalArgumentException(); 
this.items = (E[]) new Object[capacity]; 
lock = new ReentrantLock(fair); 
notEmpty = lock.newCondition(); 
notFull = lock.newCondition(); 
} 
/** 
* 通过集合构造 
*/ 
public ArrayBlockingQueue(int capacity, boolean fair, 
Collection<? extends E> c) { 
this(capacity, fair); 
if (capacity < c.size()) 
throw new IllegalArgumentException(); 
for (Iterator<? extends E> it = c.iterator(); it.hasNext();) 
add(it.next()); 
} 
/** 
* 插入元素到队尾(super调用offer方法) 
* public boolean add(E e) { 
* if (offer(e)) 
* return true; 
* else 
* throw new IllegalStateException("Queue full"); 
* } 
* 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量), 
* 在成功时返回 true,如果此队列已满,则抛出 IllegalStateException。 
*/ 
public boolean add(E e) { 
return super.add(e); 
} 
/** 
* 将指定的元素插入到此队列的尾部(如果立即可行且不会超过该队列的容量), 
* 在成功时返回 true,如果此队列已满,则返回 false。 
*/ 
public boolean offer(E e) { 
if (e == null) throw new NullPointerException(); 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
if (count == items.length) 
return false; 
else { 
insert(e); 
return true; 
} 
} finally { 
lock.unlock(); 
} 
} 
/** 
* 将指定的元素插入此队列的尾部,如果该队列已满,则等待可用的空间。 
*/ 
public void put(E e) throws InterruptedException { 
if (e == null) throw new NullPointerException(); 
final E[] items = this.items; 
final ReentrantLock lock = this.lock; 
lock.lockInterruptibly(); 
try { 
try { 
while (count == items.length) 
notFull.await(); 
} catch (InterruptedException ie) { 
notFull.signal(); // propagate to non-interrupted thread 
throw ie; 
} 
insert(e); 
} finally { 
lock.unlock(); 
} 
} 
/** 
* 将指定的元素插入此队列的尾部,如果该队列已满,则在到达指定的等待时间之前等待可用的空间。 
*/ 
public boolean offer(E e, long timeout, TimeUnit unit) 
throws InterruptedException { 
if (e == null) throw new NullPointerException(); 
long nanos = unit.toNanos(timeout); 
final ReentrantLock lock = this.lock; 
lock.lockInterruptibly(); 
try { 
for (;;) { 
if (count != items.length) { 
insert(e); 
return true; 
} 
if (nanos <= 0)//如果时间到了就返回 
return false; 
try { 
nanos = notFull.awaitNanos(nanos); 
} catch (InterruptedException ie) { 
notFull.signal(); // propagate to non-interrupted thread 
throw ie; 
} 
} 
} finally { 
lock.unlock(); 
} 
} 
//获取并移除此队列的头,如果此队列为空,则返回 null。 
public E poll() { 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
if (count == 0) 
return null; 
E x = extract(); 
return x; 
} finally { 
lock.unlock(); 
} 
} 
//获取并移除此队列的头部,在元素变得可用之前一直等待(如果有必要)。 
public E take() throws InterruptedException { 
final ReentrantLock lock = this.lock; 
lock.lockInterruptibly(); 
try { 
try { 
while (count == 0) 
notEmpty.await(); 
} catch (InterruptedException ie) { 
notEmpty.signal(); // propagate to non-interrupted thread 
throw ie; 
} 
E x = extract(); 
return x; 
} finally { 
lock.unlock(); 
} 
} 
//获取并移除此队列的头部,在指定的等待时间前等待可用的元素(如果有必要)。 
public E poll(long timeout, TimeUnit unit) throws InterruptedException { 
long nanos = unit.toNanos(timeout); 
final ReentrantLock lock = this.lock; 
lock.lockInterruptibly(); 
try { 
for (;;) { 
if (count != 0) { 
E x = extract(); 
return x; 
} 
if (nanos <= 0) 
return null; 
try { 
nanos = notEmpty.awaitNanos(nanos); 
} catch (InterruptedException ie) { 
notEmpty.signal(); // propagate to non-interrupted thread 
throw ie; 
} 
} 
} finally { 
lock.unlock(); 
} 
} 
//获取但不移除此队列的头;如果此队列为空,则返回 null。 
public E peek() { 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
return (count == 0) ? null : items[takeIndex]; 
} finally { 
lock.unlock(); 
} 
} 
/** 
* 返回此队列中元素的数量。 
*/ 
public int size() { 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
return count; 
} finally { 
lock.unlock(); 
} 
} 
/** 
*返回在无阻塞的理想情况下(不存在内存或资源约束)此队列能接受的其他元素数量。 
*/ 
public int remainingCapacity() { 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
return items.length - count; 
} finally { 
lock.unlock(); 
} 
} 
/** 
* 从此队列中移除指定元素的单个实例(如果存在)。 
*/ 
public boolean remove(Object o) { 
if (o == null) return false; 
final E[] items = this.items; 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
int i = takeIndex; 
int k = 0; 
for (;;) { 
if (k++ >= count) 
return false; 
if (o.equals(items[i])) { 
removeAt(i); 
return true; 
} 
i = inc(i); 
} 
} finally { 
lock.unlock(); 
} 
} 
/** 
* 如果此队列包含指定的元素,则返回 true。 
*/ 
public boolean contains(Object o) { 
if (o == null) return false; 
final E[] items = this.items; 
final ReentrantLock lock = this.lock; 
lock.lock(); 
try { 
int i = takeIndex; 
int k = 0; 
while (k++ < count) { 
if (o.equals(items[i])) 
return true; 
i = inc(i); 
} 
return false; 
} finally { 
lock.unlock(); 
} 
} 
…… 
}
Copy after login

For more articles related to Java collection framework arrayblockingqueue application analysis, please pay attention to the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, Svelte Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, Svelte Mar 07, 2025 pm 06:09 PM

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache? How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache? Mar 17, 2025 pm 05:44 PM

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

Node.js 20: Key Performance Boosts and New Features Node.js 20: Key Performance Boosts and New Features Mar 07, 2025 pm 06:12 PM

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

How does Java's classloading mechanism work, including different classloaders and their delegation models? How does Java's classloading mechanism work, including different classloaders and their delegation models? Mar 17, 2025 pm 05:35 PM

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue Fixed Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue Fixed Mar 07, 2025 pm 05:52 PM

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

Iceberg: The Future of Data Lake Tables Iceberg: The Future of Data Lake Tables Mar 07, 2025 pm 06:31 PM

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

How to Share Data Between Steps in Cucumber How to Share Data Between Steps in Cucumber Mar 07, 2025 pm 05:55 PM

This article explores methods for sharing data between Cucumber steps, comparing scenario context, global variables, argument passing, and data structures. It emphasizes best practices for maintainability, including concise context use, descriptive

How can I implement functional programming techniques in Java? How can I implement functional programming techniques in Java? Mar 11, 2025 pm 05:51 PM

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability

See all articles