Self-study C#07 from 0--Spiral queue and spiral motion

黄舟
Release: 2017-02-04 10:46:12
Original
1745 people have browsed it

Spiral motion implementation based on spiral queue logic

The reverse method of the spiral queue algorithm controls the two-axis motor to move according to the spiral trajectory, as shown below.

Self-study C#07 from 0--Spiral queue and spiral motion

#1. Spiral Queue Algorithm Analysis

The following figure is a spiral queue. Assume that the coordinates of 1 are (0, 0), the x direction is positive to the right, and the y direction is positive downward. For example, the coordinates of 7 are (-1, -1), and the coordinates of 2 are (1, 0). Programming allows you to input the coordinates (x, y) of any point and output the corresponding number! (Reprinted from the Internet)

Self-study C#07 from 0--Spiral queue and spiral motion


Maximum value per circle max=(2*c+1)(2*c+1), c It is the number of turns from inside to outside.

The differences between these reference values ​​and max are 1C (top), 3C (left), 5C (bottom), 7C (right) (C represents the current number of laps), on the top and bottom, y The coordinate represents (or is equal to) the number of circles (i.e. C=y), while on the left and right the x-coordinate represents (or is equal to) the number of circles (i.e. C=x). Therefore, the difference mentioned earlier can be expressed as 1y, 3x, 5y, 7x using coordinates.

Code implementation:

private static Object spiral(int x, int y) 
    {  
        int c = max(abs(x), abs(y));// 当前坐标所在圈  
        int max = (c * 2 + 1) * (c * 2 + 1);// 当前圈上最大值  

        if (y == -c) { // 上边  
            return max + (x + y);  
        } else if (x == -c) {// 左边  
            return max + (3 * x - y);  
        } else if (y == c) {// 下边  
            return max + (-x - 5 * y);  
        } else {// 右边  
            return max + (-7 * x + y);  
        }  
    }
Copy after login

2. Spiral motion

First customize the coordinate operation to represent the logical position of the PD.

struct Coordinate
    {        public int X;        public int Y;        public Coordinate(int a, int b)
        {
            X = a;
            Y = b;
        }        public static bool operator ==(Coordinate loc1, Coordinate loc2)
        {            return (loc1.X == loc2.X) && (loc1.Y == loc2.Y);
        }        public static bool operator !=(Coordinate loc1, Coordinate loc2)
        {            return !(loc1 == loc2);
        }        public override bool Equals(object loc)
        {            return this == (Coordinate)loc;
        }        public override int GetHashCode()
        {            return base.GetHashCode();
        }        public static Coordinate operator -(Coordinate loc1, Coordinate loc2)
        {            return new Coordinate(loc1.X - loc2.X, loc1.Y - loc2.Y);
        }        public static Coordinate operator +(Coordinate loc1, Coordinate loc2)
        {            return new Coordinate(loc1.X + loc2.X, loc1.Y + loc2.Y);
        }        public override string ToString()
        {            return "(" + X + "," + Y + ")";
        }
    }
Copy after login

Then reverse the method and calculate the x and y coordinates based on the number of steps.

public Coordinate ToLocation(int step, int pulse)
        {            
int c = (int)Math.Ceiling((Math.Sqrt(step) - 1) / 2);            
int max = (int)Math.Pow(2 * c + 1, 2);            
int x, y;

            y = -c;//top
            x = -(max + y - step);            
if (Math.Abs(x) <= Math.Abs(y))
            {                
this.location.X = x * pulse;                
this.location.Y = y * pulse;                
return this.location;
            }

            x = -c;//left
            y = max + 3 * x - step;            
if (Math.Abs(y) <= Math.Abs(x))
            {                
this.location.X = x * pulse;                
this.location.Y = y * pulse;                
return this.location;
            }

            y = c;//bottom
            x = max - 5 * y - step;            
if (Math.Abs(x) <= Math.Abs(y))
            {                
this.location.X = x * pulse;                
this.location.Y = y * pulse;                
return this.location;
            }

            x = c;//right
            y = -(max - 7 * x - step);            
this.location.X = x * pulse;            
this.location.Y = y * pulse;            
//LocChange();
            return this.location;
        }
Copy after login


Finally, the movement is realized according to the change of coordinates.

public void Start()
        {
            Coordinate moveToLoc, currentLoc, deltaLoc;            

            currentLoc = ToLocation(1, 0);
            logInfo = string.Format("{0}: {1}{2}.", DateTime.Now.ToString("HH:mm:ss"), "the start location is ", currentLoc.ToString());
            log.SaveLogToTxt(logInfo);

            logInfo = string.Format("{0}: {1}.", DateTime.Now.ToString("HH:mm:ss"), "begin to move... ");
            log.SaveLogToTxt(logInfo);

            for (int step = 1; step <= this.roMaxStep[0]; step++)
            {
                moveToLoc = ToLocation(step + 1, this.roPulse[0]);
                deltaLoc = moveToLoc - currentLoc;

                logInfo = string.Format("{0}: step{1}{2}{3}...", DateTime.Now.ToString("HH:mm:ss"), step + " ", "move to ", moveToLoc.ToString());
                log.SaveLogToTxt(logInfo);

                bool moveX = card.MoveX(deltaLoc.X);
                bool moveY = card.MoveY(deltaLoc.Y);

                if (moveX == false || moveY == false)
                    //throw error
                    return;

                currentLoc = moveToLoc;                
                //if RES > RoRESTarget
                //break;
            }

            logInfo = string.Format("{0}: {1}.", DateTime.Now.ToString("HH:mm:ss"), "move done");
            log.SaveLogToTxt(logInfo);

            logInfo = string.Format("{0}: {1}{2}.", DateTime.Now.ToString("HH:mm:ss"), "the current location is ", currentLoc.ToString());
            log.SaveLogToTxt(logInfo);
        }
Copy after login

The above is the content of Self-Study C#07 from 0-Spiral Queue and Spiral Movement. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!


source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!