C++ Smart Pointer Detailed Explanation
class Simple { public: Simple(int param = 0) { number = param; std::cout << "Simple: " << number << std::endl; } ~Simple() { std::cout << "~Simple: " << number << std::endl; } void PrintSomething() { std::cout << "PrintSomething: " << info_extend.c_str() << std::endl; } std::string info_extend; int number; };
void TestAutoPtr() { std::auto_ptr<Simple> my_memory(new Simple(1)); // 创建对象,输出:Simple:1 if (my_memory.get()) { // 判断智能指针是否为空 my_memory->PrintSomething(); // 使用 operator-> 调用智能指针对象中的函数 my_memory.get()->info_extend = "Addition"; // 使用 get() 返回裸指针,然后给内部对象赋值 my_memory->PrintSomething(); // 再次打印,表明上述赋值成功 (*my_memory).info_extend += " other"; // 使用 operator* 返回智能指针内部对象,然后用“.”调用智能指针对象中的函数 my_memory->PrintSomething(); // 再次打印,表明上述赋值成功 } } // my_memory 栈对象即将结束生命期,析构堆对象 Simple(1)
##The execution result is:
Simple: 1 PrintSomething: PrintSomething: Addition PrintSomething: Addition other ~Simple: 1
The above is the code for normal use of std::auto_ptr. Everything seems to be fine. In any case, we don't need to use the damn delete explicitly.
In fact, the good times did not last long. Let’s take a look at another example below:
void TestAutoPtr2() { std::auto_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { std::auto_ptr<Simple> my_memory2; // 创建一个新的 my_memory2 对象 my_memory2 = my_memory; // 复制旧的 my_memory 给 my_memory2 my_memory2->PrintSomething(); // 输出信息,复制成功 my_memory->PrintSomething(); // 崩溃 } }
In the end, the above code caused a crash , the above code is absolutely in line with C++ programming ideas, but it actually crashes. After following the source code of std::auto_ptr, we see that the culprit is "my_memory2 = my_memory". With this line of code, my_memory2 completely takes over the memory management of my_memory. ownership, causing my_memory to be dangling, causing a crash when last used.
So, when using std::auto_ptr, you must not use the "operator=" operator. As a library, users are not allowed to use it, and it is not explicitly rejected [1], which is somewhat unexpected.
After reading the first example of std::auto_ptr that did not last long, let us look at another one:
void TestAutoPtr3() { std::auto_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { my_memory.release(); } }
The execution result is:
Simple: 1
Did you see any exception? The object we created was not destructed and "~Simple: 1" was not output, resulting in a memory leak. When we don't want my_memory to continue to survive, we call the release() function to release the memory, but the result is a memory leak (in a memory-limited system, if my_memory takes up too much memory, we will consider returning it immediately after use is completed, and Instead of waiting until my_memory ends its life, it will be returned).
The correct code should be:
void TestAutoPtr3() { std::auto_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { Simple* temp_memory = my_memory.release(); delete temp_memory; } }
or
void TestAutoPtr3() { std::auto_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { my_memory.reset(); // 释放 my_memory 内部管理的内存 } }
It turns out that the release() function of std::auto_ptr only gives up memory ownership, which is obviously not in line with C++ programming ideas.
Summary: std::auto_ptr can be used to manage the memory of a single object. However, please pay attention to the following points:
(1) Try not to use "operator=". If used, do not reuse the previous object.
(2) Remember that the release() function does not release the object, but only returns ownership.
(3) std::auto_ptr is best not to be passed as a parameter (readers can write their own code to determine why not).
(4) Due to the "operator=" problem of std::auto_ptr, objects managed by it cannot be put into containers such as std::vector.
(5) ……
There are so many restrictions on using a std::auto_ptr. It cannot be used to manage heap memory arrays. This should be What are you thinking about now? I also think there are quite a lot of restrictions. One day, if you are not careful, it will cause problems.
Because std::auto_ptr has caused many problems, some designs are not very consistent with C++ programming ideas, so the following boost smart pointers have been triggered. Boost smart pointers can solve the above problems. question.
Let’s continue looking down.
3. boost::scoped_ptr
boost::scoped_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include
我们还是从代码开始分析:
void TestScopedPtr() { boost::scoped_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { my_memory->PrintSomething(); my_memory.get()->info_extend = "Addition"; my_memory->PrintSomething(); (*my_memory).info_extend += " other"; my_memory->PrintSomething(); my_memory.release(); // 编译 error: scoped_ptr 没有 release 函数 std::auto_ptr<Simple> my_memory2; my_memory2 = my_memory; // 编译 error: scoped_ptr 没有重载 operator=,不会导致所有权转移 } }
首先,我们可以看到,boost::scoped_ptr 也可以像 auto_ptr 一样正常使用。但其没有 release() 函数,不会导致先前的内存泄露问题。其次,由于 boost::scoped_ptr 是独享所有权的,所以明确拒绝用户写“my_memory2 = my_memory”之类的语句,可以缓解 std::auto_ptr 几个恼人的问题。
由于 boost::scoped_ptr 独享所有权,当我们真真需要复制智能指针时,需求便满足不了了,如此我们再引入一个智能指针,专门用于处理复制,参数传递的情况,这便是如下的 boost::shared_ptr。
4、boost::shared_ptr
boost::shared_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include
我们还是从代码开始分析:
void TestSharedPtr(boost::shared_ptr<Simple> memory) { // 注意:无需使用 reference (或 const reference) memory->PrintSomething(); std::cout << "TestSharedPtr UseCount: " << memory.use_count() << std::endl; } void TestSharedPtr2() { boost::shared_ptr<Simple> my_memory(new Simple(1)); if (my_memory.get()) { my_memory->PrintSomething(); my_memory.get()->info_extend = "Addition"; my_memory->PrintSomething(); (*my_memory).info_extend += " other"; my_memory->PrintSomething(); } std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl; TestSharedPtr(my_memory); std::cout << "TestSharedPtr2 UseCount: " << my_memory.use_count() << std::endl; //my_memory.release();// 编译 error: 同样,shared_ptr 也没有 release 函数 }
执行结果为:
Simple: 1 PrintSomething: PrintSomething: Addition PrintSomething: Addition other TestSharedPtr2 UseCount: 1 PrintSomething: Addition other TestSharedPtr UseCount: 2 TestSharedPtr2 UseCount: 1 ~Simple: 1
boost::shared_ptr 也可以很方便的使用。并且没有 release() 函数。关键的一点,boost::shared_ptr 内部维护了一个引用计数,由此可以支持复制、参数传递等。boost::shared_ptr 提供了一个函数 use_count() ,此函数返回 boost::shared_ptr 内部的引用计数。查看执行结果,我们可以看到在 TestSharedPtr2 函数中,引用计数为 1,传递参数后(此处进行了一次复制),在函数TestSharedPtr 内部,引用计数为2,在 TestSharedPtr 返回后,引用计数又降低为 1。当我们需要使用一个共享对象的时候,boost::shared_ptr 是再好不过的了。
在此,我们已经看完单个对象的智能指针管理,关于智能指针管理数组,我们接下来讲到。
5、boost::scoped_array
boost::scoped_array 属于 boost 库,定义在 namespace boost 中,包含头文件 #include
boost::scoped_array 便是用于管理动态数组的。跟 boost::scoped_ptr 一样,也是独享所有权的。
我们还是从代码开始分析:
void TestScopedArray() { boost::scoped_array<Simple> my_memory(new Simple[2]); // 使用内存数组来初始化 if (my_memory.get()) { my_memory[0].PrintSomething(); my_memory.get()[0].info_extend = "Addition"; my_memory[0].PrintSomething(); (*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator* my_memory[0].release(); // 同上,没有 release 函数 boost::scoped_array<Simple> my_memory2; my_memory2 = my_memory; // 编译 error,同上,没有重载 operator= } }
boost::scoped_array 的使用跟 boost::scoped_ptr 差不多,不支持复制,并且初始化的时候需要使用动态数组。另外,boost::scoped_array 没有重载“operator*”,其实这并无大碍,一般情况下,我们使用 get() 函数更明确些。
下面肯定应该讲 boost::shared_array 了,一个用引用计数解决复制、参数传递的智能指针类。
6、boost::shared_array
boost::shared_array 属于 boost 库,定义在 namespace boost 中,包含头文件 #include
由于 boost::scoped_array 独享所有权,显然在很多情况下(参数传递、对象赋值等)不满足需求,由此我们引入 boost::shared_array。跟 boost::shared_ptr 一样,内部使用了引用计数。
我们还是从代码开始分析:
void TestSharedArray(boost::shared_array<Simple> memory) { // 注意:无需使用 reference (或 const reference) std::cout << "TestSharedArray UseCount: " << memory.use_count() << std::endl; } void TestSharedArray2() { boost::shared_array<Simple> my_memory(new Simple[2]); if (my_memory.get()) { my_memory[0].PrintSomething(); my_memory.get()[0].info_extend = "Addition 00"; my_memory[0].PrintSomething(); my_memory[1].PrintSomething(); my_memory.get()[1].info_extend = "Addition 11"; my_memory[1].PrintSomething(); //(*my_memory)[0].info_extend += " other"; // 编译 error,scoped_ptr 没有重载 operator* } std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl; TestSharedArray(my_memory); std::cout << "TestSharedArray2 UseCount: " << my_memory.use_count() << std::endl; }
执行结果为:
Simple: 0 Simple: 0 PrintSomething: PrintSomething: Addition 00 PrintSomething: PrintSomething: Addition 11 TestSharedArray2 UseCount: 1 TestSharedArray UseCount: 2 TestSharedArray2 UseCount: 1 ~Simple: 0 ~Simple: 0
跟 boost::shared_ptr 一样,使用了引用计数,可以复制,通过参数来传递。
至此,我们讲过的智能指针有 std::auto_ptr、boost::scoped_ptr、boost::shared_ptr、boost::scoped_array、boost::shared_array。这几个智能指针已经基本够我们使用了,90% 的使用过标准智能指针的代码就这 5 种。可如下还有两种智能指针,它们肯定有用,但有什么用处呢,一起看看吧。
7、boost::weak_ptr
boost::weak_ptr 属于 boost 库,定义在 namespace boost 中,包含头文件 #include
在讲 boost::weak_ptr 之前,让我们先回顾一下前面讲解的内容。似乎 boost::scoped_ptr、boost::shared_ptr 这两个智能指针就可以解决所有单个对象内存的管理了,这儿还多出一个 boost::weak_ptr,是否还有某些情况我们没纳入考虑呢?
回答:有。首先 boost::weak_ptr 是专门为 boost::shared_ptr 而准备的。有时候,我们只关心能否使用对象,并不关心内部的引用计数。boost::weak_ptr 是 boost::shared_ptr 的观察者(Observer)对象,观察者意味着 boost::weak_ptr 只对 boost::shared_ptr 进行引用,而不改变其引用计数,当被观察的 boost::shared_ptr 失效后,相应的 boost::weak_ptr 也相应失效。
我们还是从代码开始分析:
void TestWeakPtr() { boost::weak_ptr<Simple> my_memory_weak; boost::shared_ptr<Simple> my_memory(new Simple(1)); std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl; my_memory_weak = my_memory; std::cout << "TestWeakPtr boost::shared_ptr UseCount: " << my_memory.use_count() << std::endl; }
执行结果为:
Simple: 1 TestWeakPtr boost::shared_ptr UseCount: 1 TestWeakPtr boost::shared_ptr UseCount: 1 ~Simple: 1
我们看到,尽管被赋值了,内部的引用计数并没有什么变化,当然,读者也可以试试传递参数等其他情况。
现在要说的问题是,boost::weak_ptr 到底有什么作用呢?从上面那个例子看来,似乎没有任何作用,其实 boost::weak_ptr 主要用在软件架构设计中,可以在基类(此处的基类并非抽象基类,而是指继承于抽象基类的虚基类)中定义一个 boost::weak_ptr,用于指向子类的 boost::shared_ptr,这样基类仅仅观察自己的 boost::weak_ptr 是否为空就知道子类有没对自己赋值了,而不用影响子类 boost::shared_ptr 的引用计数,用以降低复杂度,更好的管理对象。
8、boost::intrusive_ptr
boost::intrusive_ptr属于 boost 库,定义在 namespace boost 中,包含头文件 #include
讲完如上 6 种智能指针后,对于一般程序来说 C++ 堆内存管理就够用了,现在有多了一种 boost::intrusive_ptr,这是一种插入式的智能指针,内部不含有引用计数,需要程序员自己加入引用计数,不然编译不过(⊙﹏⊙b汗)。个人感觉这个智能指针没太大用处,至少我没用过。有兴趣的朋友自己研究一下源代码哦J。
三、总结
如上讲了这么多智能指针,有必要对这些智能指针做个总结:
1、在可以使用 boost 库的场合下,拒绝使用 std::auto_ptr,因为其不仅不符合 C++ 编程思想,而且极容易出错[2]。
2、在确定对象无需共享的情况下,使用 boost::scoped_ptr(当然动态数组使用 boost::scoped_array)。
3、在对象需要共享的情况下,使用 boost::shared_ptr(当然动态数组使用 boost::shared_array)。
4、在需要访问 boost::shared_ptr 对象,而又不想改变其引用计数的情况下,使用 boost::weak_ptr,一般常用于软件框架设计中。
5、最后一点,也是要求最苛刻一点:在你的代码中,不要出现 delete 关键字(或 C 语言的 free 函数),因为可以用智能指针去管理。
以上就是C++ 智能指针详解的内容,更多相关内容请关注PHP中文网(www.php.cn)!