


Detailed explanation of the use of smtplib module in Python to process emails with examples
In Internet-based applications, programs often need to automatically send emails. For example: the registration system of a website will send an email to confirm the registration when the user registers; when the user forgets the login password, the user will retrieve the password through email. The smtplib module is a client implementation of SMTP (Simple Mail Transfer Protocol) in Python. We can use the smtplib module to send emails easily. The following example uses less than ten lines of code to send an email:
#coding=gbk import smtplib smtp = smtplib.SMTP() smtp.connect("smtp.yeah.net", "25") smtp.login('用户名', '密码') smtp.sendmail('from@yeah.net', 'to@21cn.com', 'From: from@yeah.net/r/nTo: to@21cn.com/r/nSubject: this is a email from python demo/r/n/r/nJust for test~_~') smtp.quit()
This example is simple enough^_^! The classes and methods in the stmplib module are introduced in detail below.
smtplib.SMTP([host[, port[, local_hostname[, timeout]]]])
SMTP class constructor, indicating the connection with the SMTP server, through With this connection, we can send instructions to the SMTP server and perform related operations (such as logging in, sending emails). This class provides a number of methods, which are described below. All its parameters are optional. The host parameter represents the host name of the SMTP server. The SMTP host in the above example is "smtp.yeah.net"; port represents the port of the SMTP service. The default is 25; if you are creating an SMTP object These two parameters are provided during initialization, and the connect method will be automatically called to connect to the server during initialization.
The smtplib module also provides the SMTP_SSL class and LMTP class, and their operations are basically the same as SMTP.
Methods provided by smtplib.SMTP:
##
SMTP.set_debuglevel(level)
SMTP.connect([host[, port]])
SMTP.docmd(cmd[, argstring])
import smtplib, base64, time userName = base64.encodestring('from').strip() password = base64.encodestring('password').strip() smtp = smtplib.SMTP() smtp.connect("smtp.yeah.net:25") print smtp.docmd('helo', 'from') print smtp.docmd('auth login') print smtp.docmd(userName) print smtp.docmd(password) print smtp.docmd('mail from:', '<from@yeah.net>') print smtp.docmd('rcpt to:', '<from@yeah.net>') #data 指令表示邮件内容 print smtp.docmd('data') print smtp.docmd( '''''from: from@yeah.net to: from@yeah.net subject: subject email body . ''' ) smtp.quit()
SMTP.helo([hostname])
Use the "helo" command to confirm identity to the server. It is equivalent to telling the SMTP server "who I am".
SMTP.has_extn(name)
SMTP.verify(address)
SMTP.login(user, password)
SMTP.sendmail(from_addr, to_addrs, msg[, mail_options, rcpt_options])
'''''From: from@yeah.net To: to@21cn.com Subject: test just for test'''
SMTP.quit()
email and its related submodules
- class email.mime.multipart. MIMEMultipart: A collection of multiple MIME objects.
- class email.mime.audio. MIMEAudio: MIME audio object.
- class email.mime.image. MIMEImage: MIME binary file object.
- class email.mime.text. MIMEText: MIME text object.
#coding=gbk import smtplib, mimetypes from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.mime.image import MIMEImage msg = MIMEMultipart() msg['From'] = "from@yeah.net" msg['To'] = 'to@21cn.com' msg['Subject'] = 'email for tesing' #添加邮件内容 txt = MIMEText("这是邮件内容~~") msg.attach(txt) #添加二进制附件 fileName = r'e:/PyQt4.rar' ctype, encoding = mimetypes.guess_type(fileName) if ctype is None or encoding is not None: ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) att1 = MIMEImage((lambda f: (f.read(), f.close()))(open(fileName, 'rb'))[0], _subtype = subtype) att1.add_header('Content-Disposition', 'attachment', filename = fileName) msg.attach(att1) #发送邮件 smtp = smtplib.SMTP() smtp.connect('smtp.yeah.net:25') smtp.login('from', '密码') smtp.sendmail('from@yeah.net', 'to@21cn.com', msg.as_string()) smtp.quit() print '邮件发送成功'

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

The article introduces the operation of MySQL database. First, you need to install a MySQL client, such as MySQLWorkbench or command line client. 1. Use the mysql-uroot-p command to connect to the server and log in with the root account password; 2. Use CREATEDATABASE to create a database, and USE select a database; 3. Use CREATETABLE to create a table, define fields and data types; 4. Use INSERTINTO to insert data, query data, update data by UPDATE, and delete data by DELETE. Only by mastering these steps, learning to deal with common problems and optimizing database performance can you use MySQL efficiently.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.

HadiDB: A lightweight, high-level scalable Python database HadiDB (hadidb) is a lightweight database written in Python, with a high level of scalability. Install HadiDB using pip installation: pipinstallhadidb User Management Create user: createuser() method to create a new user. The authentication() method authenticates the user's identity. fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL Workbench can connect to MariaDB, provided that the configuration is correct. First select "MariaDB" as the connector type. In the connection configuration, set HOST, PORT, USER, PASSWORD, and DATABASE correctly. When testing the connection, check that the MariaDB service is started, whether the username and password are correct, whether the port number is correct, whether the firewall allows connections, and whether the database exists. In advanced usage, use connection pooling technology to optimize performance. Common errors include insufficient permissions, network connection problems, etc. When debugging errors, carefully analyze error information and use debugging tools. Optimizing network configuration can improve performance

For production environments, a server is usually required to run MySQL, for reasons including performance, reliability, security, and scalability. Servers usually have more powerful hardware, redundant configurations and stricter security measures. For small, low-load applications, MySQL can be run on local machines, but resource consumption, security risks and maintenance costs need to be carefully considered. For greater reliability and security, MySQL should be deployed on cloud or other servers. Choosing the appropriate server configuration requires evaluation based on application load and data volume.
