Home > Backend Development > Python Tutorial > Detailed explanation of common functions in python

Detailed explanation of common functions in python

高洛峰
Release: 2017-02-23 10:54:26
Original
1177 people have browsed it

1. Introduction to functions

Why do we need functions? Because when writing code, if there are no functions, there will be a lot of repeated code, so the code reuse rate will be relatively low. . . And such code is also very difficult to maintain. In order to solve these problems, functions have emerged to encapsulate some frequently occurring codes, so that this function can be called wherever this code needs to be called. .

Definition of function: A function refers to a set of statements encapsulated by a name (function name). To execute this function, just call its function name

Features :

Code reuse
Maintain consistency
Extensibility

2. Creation of functions

In python The format of the function definition is as follows:

def 函数名(形参):
 函数体内部代码块
Copy after login

Calling the function You can call the function by using the function name (actual parameters).

The naming rules for function names are the same as those for variables:

  • The function name must start with an underscore or letter, and can contain any combination of letters, numbers, or underscores. No punctuation marks can be used;

  • Function names are case-sensitive.

  • Function names cannot be reserved words.

The difference between formal parameters and actual parameters:

When a function is defined, parameters can be added in parentheses after the function name , these parameters are called formal parameters. Formal parameters: As the name implies, they are formal parameters, just a code name.

The actual parameters are the parameters in parentheses after the function name when calling the function. The formal parameters and actual parameters need to correspond one to one, otherwise an error will be reported when calling the function.

3. Function parameters and return values

As mentioned earlier, the formal parameters and actual parameters of the function must correspond one to one, so the parameter correspondences are as follows:

  1. Required parameters

  2. Keyword parameters

  3. Default parameters

  4. Indefinite length parameters*args

  5. ##Indefinite length parameters**kwargs


1. Required parameters:

Required parameters must be passed into the function one by one in a corresponding relationship. The actual parameters passed when the function is called must correspond one-to-one with the formal parameters when the function is defined. It cannot be more or less, and the order must be consistent.

For example:

 def f(name,age):
   print(name,age)
 f("小明",18)
Copy after login

2. Keyword parameters

The keyword parameters are The concept of actual parameters is to declare that a certain parameter belongs to a certain keyword when calling a function. Using keyword arguments allows a function to be called in a different order than when it was declared, because the Python interpreter is able to match parameter names with parameter values.

For example:

 def f(name,age):
   print(name,age)
 f(name="小明",18)
Copy after login

3. Default parameters

The default parameters are in the function When declaring, you can specify a default value for a parameter. Such parameters are called default value parameters. If the default parameter does not receive the corresponding actual parameter when the function is called, the default value will be assigned to this parameter.

For example:

 def f(name,age,sex="male"):
   print(name,age,sex)
 f(name="小明",18)
Copy after login

In this way, the default parameter male will be assigned to sex.

4. Indefinite length parameters *args

In Python, when a function is declared, the parameters can be accepted by using (*variable name) to accept uncertainty Length parameters, but in python it is a convention to use *args to accept variable length parameters, so that the parameters passed when calling the function can be of variable length. After args accepts variable-length parameters, these parameters are put into a tuple. These variable-length parameters can be obtained by accessing args.

For example:

 def f(*args):
   print(args)
 f("小明",18,"male")
Copy after login

What is printed is a tuple, which stores ("Xiao Ming", 18, "male") these three elements.

5. Variable length parameters **kwargs

But the above args can only receive unnamed parameters, then if there are variable length parameters similar to keyword parameters what can we do about it? Python uses (**variable name) to receive named variable parameters of variable length. Similarly, it is also customary in python to use **kwargs to receive variable-length named parameters. After kwargs receives the variable-length parameters, it puts these parameters into a dictionary, and the corresponding parameter values ​​can be obtained through the key.

For example:

 def f(**kwargs):
   print(kwargs)
 f(name="小明",age=18,sex="male")
Copy after login

After introducing these parameters, the next thing to introduce is about the mixed use of these parameters. Situation:

What if a function uses all the above types of parameters? In order to avoid ambiguity, python stipulates that if there are multiple parameters mixed, follow the following order usage rules:

def f (required parameters, default parameters, *args, **kwargs):

        pass
If args and kwargs exist at the same time, args is on the left

The default parameters are on the right of the required parameters and on the left of *args

The position of the keyword parameters is not fixed ( ps: Keyword parameters are not determined when the function is defined)

那么,假如有一个列表想要传递进入一个不定长的未命名参数的函数中去,可以在该列表前面加上*实现,同理如果想传递一个字典进入不定长命名参数的函数中去,可以在该字典前面加上**

举个栗子:

 def f(*args,**kwargs):
   print(args)
   for i in kwargs:
     print("%s:%s"%(i,kwargs[i]))
 
 f(*[1,2,3],**{"a":1,"b":2})
Copy after login

函数的返回值

要想获取函数的执行结果,就可以用return语句把结果返回

注意:

函数在执行过程中只要遇到return语句,就会停止执行并返回结果,也可以理解为 return 语句代表着函数的结束 如果未在函数中指定return,那这个函数的返回值为None
return多个对象,解释器会把这多个对象组装成一个元组作为一个一个整体结果输出。

4.LEGB作用域

python中的作用域分4种情况:

L:local,局部作用域,即函数中定义的变量;

E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的;

G:globa,全局变量,就是模块级别定义的变量;

B:built-in,系统固定模块里面的变量,比如int, bytearray等。 搜索变量的优先级顺序依次是:作用域局部>外层作用域>当前模块中的全局>python内置作用域,也就是LEGB。

local和enclosing是相对的,enclosing变量相对上层来说也是local。

在Python中,只有模块(module),类(class)以及函数(def、lambda)才会引入新的作用域,其它的代码块(如if、try、for等)不会引入新的作用域。

变量的修改(错误修改,面试题里经常出):

 x=6
 def f2():
   print(x)
   x=5
 f2()
 
 # 错误的原因在于print(x)时,解释器会在局部作用域找,会找到x=5(函数已经加载到内存),但x使用在声明前了,所以报错:
 # local variable 'x' referenced before assignment.如何证明找到了x=5呢?简单:注释掉x=5,x=6
 # 报错为:name 'x' is not defined
 #同理
 x=6
 def f2():
   x+=1 #local variable 'x' referenced before assignment.
 f2()
Copy after login

global关键字

当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字了,当修改的变量是在全局作用域(global作用域)上的,就要使用global先声明一下,代码如下:

 count = 10
 def outer():
   global count
   print(count) 
   count = 100
   print(count)
 outer()
Copy after login

nonlocal关键字

global关键字声明的变量必须在全局作用域上,不能嵌套作用域上,当要修改嵌套作用域(enclosing作用域,外层非全局作用域)中的变量怎么办呢,这时就需要nonlocal关键字了

 def outer():
   count = 10
   def inner():
     nonlocal count
     count = 20
     print(count)
   inner()
   print(count)
 outer()
Copy after login

小结

  • 变量查找顺序:LEGB,作用域局部>外层作用域>当前模块中的全局>python内置作用域;

  • 只有模块、类、及函数才能引入新作用域;

  • 对于一个变量,内部作用域先声明就会覆盖外部变量,不声明直接使用,就会使用外部作用域的变量;

  • 内部作用域要修改外部作用域变量的值时,全局变量要使用global关键字,嵌套作用域变量要使用nonlocal关键字。nonlocal是python3新增的关键字,有了这个 关键字,就能完美的实现闭包了。

5.特殊函数

递归函数定义:递归函数就是在函数内部调用自己

有时候解决某些问题的时候,逻辑比较复杂,这时候可以考虑使用递归,因为使用递归函数的话,逻辑比较清晰,可以解决一些比较复杂的问题。但是递归函数存在一个问题就是假如递归调用自己的次数比较多的话,将会使得计算速度变得很慢,而且在python中默认的递归调用深度是1000层,超过这个层数将会导致“爆栈”。。。所以,在可以不用递归的时候建议尽量不要使用递归。

举个栗子:

 def factorial(n): # 使用循环实现求和
   Sum=1
   for i in range(2,n+1):
     Sum*=i
   return Sum
 print(factorial(7))
 
 def recursive_factorial(n): # 使用递归实现求和
   return (2 if n==2 else n*recursive_factorial(n-1))
 
 print(recursive_factorial(7))
 
 def feibo(n): # 使用递归实现菲波那切数列
   if n==0 or n==1:return n
   else:return feibo(n-1)+feibo(n-2)
 print(feibo(8))
 
 def feibo2(n): # 使用循环实现菲波那切数列
   before,after=0,1
   for i in range(n):
     before,after=after,before+after
   return before
 print(feibo2(300))
Copy after login

递归函数的优点:定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

递归特性:

  • 必须有一个明确的结束条件

  • 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

  • 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返 回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。)

6.函数式编程

关于函数式编程,我理解的也不是很深,但是python中有4个比较重要的内置函数,组合起来使用有时候能大大提高编程效率。

1 filter(function, sequence)

 str = ['a', 'b','c', 'd']
 def fun1(s):
   if s != 'a':
     return s
 ret = filter(fun1, str)
print(list(ret))# ret是一个迭代器对象
Copy after login

对sequence中的item依次执行function(item),将执行结果为True的item做成一个filter object的迭代器返回。可以看作是过滤函数。

2 map(function, sequence)

 str = [1, 2,'a', 'b']
 def fun2(s):
   return s + "alvin"
 ret = map(fun2, str)
 print(ret)   # map object的迭代器
 print(list(ret))# ['aalvin', 'balvin', 'calvin', 'dalvin']
Copy after login

对sequence中的item依次执行function(item),将执行结果组成一个map object迭代器返回. map也支持多个sequence,这就要求function也支持相应数量的参数输入:

 def add(x,y):
   return x+y
 print (list(map(add, range(10), range(10))))##[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Copy after login

3 reduce(function, sequence, starting_value)

 from functools import reduce
 def add1(x,y):
   return x + y
 
 print (reduce(add1, range(1, 101)))## 4950 (注:1+2+...+99)
 print (reduce(add1, range(1, 101), 20))## 4970 (注:1+2+...+99+20)
Copy after login

对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用.

4 lambda

普通函数与匿名函数的对比:

 #普通函数
 def add(a,b):
   return a + b
 
 print add(2,3)
 
 #匿名函数
 add = lambda a,b : a + b
 print add(2,3)

 #========输出===========
 5
 5
Copy after login

匿名函数的命名规则,用lamdba 关键字标识,冒号(:)左侧表示函数接收的参数(a,b) ,冒号(:)右侧表示函数的返回值(a+b)。

因为lamdba在创建时不需要命名,所以,叫匿名函数

更多python常用函数详解相关文章请关注PHP中文网!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template