Home Backend Development Python Tutorial python3 crawls the content of Baidu Encyclopedia based on keywords

python3 crawls the content of Baidu Encyclopedia based on keywords

Feb 25, 2017 am 10:52 AM

前言

关于python版本,我一开始看很多资料说python2比较好,因为很多库还不支持3,但是使用到现在为止觉得还是pythin3比较好用,因为编码什么的问题,觉得2还是没有3方便。而且在网上找到的2中的一些资料稍微改一下也还是可以用。

好了,开始说爬百度百科的事。

这里设定的需求是爬取北京地区n个景点的全部信息,n个景点的名称是在文件中给出的。没有用到api,只是单纯的爬网页信息。 

1、根据关键字获取url

由于只需要爬取信息,而且不涉及交互,可以使用简单的方法而不需要模拟浏览器。

可以直接

<strong>http://www.php.cn/"guanjianci"</strong>
Copy after login

<strong>for </strong>l <strong>in </strong>view_names:
 <strong>&#39;&#39;&#39;http://baike.baidu.com/search/word?word=&#39;&#39;&#39; </strong><em># 得到url的方法
</em><em> </em>name=urllib.parse.quote(l)
 name.encode(<strong>&#39;utf-8&#39;</strong>)
 url=<strong>&#39;http://baike.baidu.com/search/word?word=&#39;</strong>+name
Copy after login

这里要注意关键词是中午所以要注意编码问题,由于url中不能出现空格,所以需要用quote函数处理一下。

关于quote():

在 Python2.x 中的用法是:urllib.quote(text) 。Python3.x 中是urllib.parse.quote(text) 。按照标准,URL只允许一部分ASCII 字符(数字字母和部分符号),其他的字符(如汉字)是不符合URL标准的。所以URL中使用其他字符就需要进行URL编码。URL中传参数的部分(query String),格式是:name1=value1&name2=value2&name3=value3。假如你的name或者value值中的『&』或者『=』等符号,就当然会有问题。所以URL中的参数字符串也需要把『&=』等符号进行编码。URL编码的方式是把需要编码的字符转化为%xx的形式。通常URL编码是基于UTF-8的(当然这和浏览器平台有关)

例子:

比如『我,unicode 为 0x6211,UTF-8编码为0xE60x880x91,URL编码就是 %E6%88%91。

Python的urllib库中提供了quotequote_plus两种方法。这两种方法的编码范围不同。不过不用深究,这里用quote就够了。

2、下载url

用urllib库轻松实现,见下面的代码中def download(self,url)

3、利用Beautifulsoup获取html

4、数据分析

百科中的内容是并列的段,所以在爬的时候不能自然的按段逻辑存储(因为全都是并列的)。所以必须用正则的方法。

基本的想法就是把整个html文件看做是str,然后用正则的方法截取想要的内容,在重新把这段内容转换成beautifulsoup对象,然后在进一步处理。

可能要花些时间看一下正则。

代码中还有很多细节,忘了再查吧只能,下次绝对应该边做编写文档,或者做完马上写。。。

贴代码!

# coding:utf-8
&#39;&#39;&#39;
 function:爬取百度百科所有北京景点,
 author:yi
&#39;&#39;&#39;
import urllib.request
from urllib.request import urlopen
from urllib.error import HTTPError
import urllib.parse
from bs4 import BeautifulSoup
import re
import codecs
import json
 
class BaikeCraw(object):
 def __init__(self):
  self.urls =set()
  self.view_datas= {}
 
 def craw(self,filename):
  urls = self.getUrls(filename)
  if urls == None:
   print("not found")
  else:
   for urll in urls:
    print(urll)
    try:
     html_count=self.download(urll)
     self.passer(urll, html_count)
    except:
     print("view do not exist")
    &#39;&#39;&#39;file=self.view_datas["view_name"]
    self.craw_pic(urll,file,html_count)
     print(file)&#39;&#39;&#39;
 
 
 def getUrls (self, filename):
  new_urls = set()
  file_object = codecs.open(filename, encoding=&#39;utf-16&#39;, )
  try:
   all_text = file_object.read()
  except:
   print("文件打开异常!")
   file_object.close()
  file_object.close()
  view_names=all_text.split(" ")
  for l in view_names:
   if &#39;?&#39; in l:
    view_names.remove(l)
  for l in view_names:
   &#39;&#39;&#39;http://baike.baidu.com/search/word?word=&#39;&#39;&#39; # 得到url的方法
   name=urllib.parse.quote(l)
   name.encode(&#39;utf-8&#39;)
   url=&#39;http://baike.baidu.com/search/word?word=&#39;+name
   new_urls.add(url)
  print(new_urls)
  return new_urls
 
 def manger(self):
  pass
 
 def passer(self,urll,html_count):
  soup = BeautifulSoup(html_count, &#39;html.parser&#39;, from_encoding=&#39;utf_8&#39;)
  self._get_new_data(urll, soup)
  return
 
 def download(self,url):
  if url is None:
   return None
  response = urllib.request.urlopen(url)
  if response.getcode() != 200:
   return None
  return response.read()
 
 def _get_new_data(self, url, soup): ##得到数据
  if soup.find(&#39;p&#39;,class_="main-content").find(&#39;h1&#39;) is not None:
   self.view_datas["view_name"]=soup.find(&#39;p&#39;,class_="main-content").find(&#39;h1&#39;).get_text()#景点名
   print(self.view_datas["view_name"])
  else:
   self.view_datas["view_name"] = soup.find("p", class_="feature_poster").find("h1").get_text()
  self.view_datas["view_message"] = soup.find(&#39;p&#39;, class_="lemma-summary").get_text()#简介
  self.view_datas["basic_message"]=soup.find(&#39;p&#39;, class_="basic-info cmn-clearfix").get_text() #基本信息
  self.view_datas["basic_message"]=self.view_datas["basic_message"].split("\n")
  get=[]
  for line in self.view_datas["basic_message"]:
   if line != "":
   get.append(line)
  self.view_datas["basic_message"]=get
  i=1
  get2=[]
  tmp="%%"
  for line in self.view_datas["basic_message"]:
 
   if i % 2 == 1:
    tmp=line
   else:
    a=tmp+":"+line
    get2.append(a)
   i=i+1
  self.view_datas["basic_message"] = get2
  self.view_datas["catalog"] = soup.find(&#39;p&#39;, class_="lemma-catalog").get_text().split("\n")#目录整体
  get = []
  for line in self.view_datas["catalog"]:
   if line != "":
    get.append(line)
  self.view_datas["catalog"] = get
  #########################百科内容
  view_name=self.view_datas["view_name"]
  html = urllib.request.urlopen(url)
  soup2 = BeautifulSoup(html.read(), &#39;html.parser&#39;).decode(&#39;utf-8&#39;)
  p = re.compile(r&#39;&#39;, re.DOTALL) # 尾
  r = p.search(content_data_node)
  content_data = content_data_node[0:r.span(0)[0]]
  lists = content_data.split(&#39;&#39;)
  i = 1
  for list in lists:#每一大块
   final_soup = BeautifulSoup(list, "html.parser")
   name_list = None
   try:
    part_name = final_soup.find(&#39;h2&#39;, class_="title-text").get_text().replace(view_name, &#39;&#39;).strip()
    part_data = final_soup.get_text().replace(view_name, &#39;&#39;).replace(part_name, &#39;&#39;).replace(&#39;编辑&#39;, &#39;&#39;) # 历史沿革
    name_list = final_soup.findAll(&#39;h3&#39;, class_="title-text")
    all_name_list = {}
    na="part_name"+str(i)
    all_name_list[na] = part_name
    final_name_list = []###########
    for nlist in name_list:
     nlist = nlist.get_text().replace(view_name, &#39;&#39;).strip()
     final_name_list.append(nlist)
    fin="final_name_list"+str(i)
    all_name_list[fin] = final_name_list
    print(all_name_list)
    i=i+1
    #正文
    try:
     p = re.compile(r&#39;&#39;, re.DOTALL)
     final_soup = final_soup.decode(&#39;utf-8&#39;)
     r = p.search(final_soup)
     final_part_data = final_soup[r.span(0)[0]:]
     part_lists = final_part_data.split(&#39;&#39;)
     for part_list in part_lists:
      final_part_soup = BeautifulSoup(part_list, "html.parser")
      content_lists = final_part_soup.findAll("p", class_="para")
      for content_list in content_lists: # 每个最小段
       try:
        pic_word = content_list.find("p",
                class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
        try:
         pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word, &#39;&#39;).replace(pic_word2, &#39;&#39;)
        except:
         content_list = content_list.get_text().replace(pic_word, &#39;&#39;)
 
       except:
        try:
         pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word2, &#39;&#39;)
        except:
         content_list = content_list.get_text()
       r_part = re.compile(r&#39;\[\d.\]|\[\d\]&#39;)
       part_result, number = re.subn(r_part, "", content_list)
       part_result = "".join(part_result.split())
       #print(part_result)
    except:
     final_part_soup = BeautifulSoup(list, "html.parser")
     content_lists = final_part_soup.findAll("p", class_="para")
     for content_list in content_lists:
      try:
       pic_word = content_list.find("p", class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
       try:
        pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word, &#39;&#39;).replace(pic_word2, &#39;&#39;)
       except:
        content_list = content_list.get_text().replace(pic_word, &#39;&#39;)
 
      except:
       try:
        pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word2, &#39;&#39;)
       except:
        content_list = content_list.get_text()
      r_part = re.compile(r&#39;\[\d.\]|\[\d\]&#39;)
      part_result, number = re.subn(r_part, "", content_list)
      part_result = "".join(part_result.split())
      #print(part_result)
 
   except:
    print("error")
  return
 
 def output(self,filename):
  json_data = json.dumps(self.view_datas, ensure_ascii=False, indent=2)
  fout = codecs.open(filename+&#39;.json&#39;, &#39;a&#39;, encoding=&#39;utf-16&#39;, )
  fout.write( json_data)
  # print(json_data)
  return
 
 def craw_pic(self,url,filename,html_count):
  soup = BeautifulSoup(html_count, &#39;html.parser&#39;, from_encoding=&#39;utf_8&#39;)
  node_pic=soup.find(&#39;p&#39;,class_=&#39;banner&#39;).find("a", href=re.compile("/photo/poi/....\."))
  if node_pic is None:
   return None
  else:
   part_url_pic=node_pic[&#39;href&#39;]
   full_url_pic=urllib.parse.urljoin(url,part_url_pic)
   #print(full_url_pic)
  try:
   html_pic = urlopen(full_url_pic)
  except HTTPError as e:
   return None
  soup_pic=BeautifulSoup(html_pic.read())
  pic_node=soup_pic.find(&#39;p&#39;,class_="album-list")
  print(pic_node)
  return
 
if __name__ =="__main__" :
 spider=BaikeCraw()
 filename="D:\PyCharm\\view_spider\\view_points_part.txt"
 spider.craw(filename)
Copy after login

总结

用python3根据关键词爬取百度百科的内容到这就基本结束了,希望这篇文章能对大家学习python有所帮助。

更多python3根据关键词爬取百度百科的内容相关文章请关注PHP中文网!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

What are regular expressions? What are regular expressions? Mar 20, 2025 pm 06:25 PM

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to dynamically create an object through a string and call its methods in Python? How to dynamically create an object through a string and call its methods in Python? Apr 01, 2025 pm 11:18 PM

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

See all articles