Home Java javaTutorial Several algorithms for implementing load balancing in Java

Several algorithms for implementing load balancing in Java

Feb 27, 2017 pm 04:13 PM
load balancing

This article mainly introduces several algorithm codes that explain Java's load balancing in detail. The editor thinks it is quite good, so I will share it with you now and give it as a reference. Let’s follow the editor and take a look.

This article mainly introduces several algorithms for Java to achieve load balancing, as follows:

Polling:


package class2.zookeeper.loadbalance;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * 負載均衡算法,輪詢法
 * @author guoy
 *
 */
public class TestRoundRobin {

  
  static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>();

   static{
    serverWeigthMap.put("192.168.1.12", 1);
    serverWeigthMap.put("192.168.1.13", 1);
    serverWeigthMap.put("192.168.1.14", 2);
    serverWeigthMap.put("192.168.1.15", 2);
    serverWeigthMap.put("192.168.1.16", 3);
    serverWeigthMap.put("192.168.1.17", 3);
    serverWeigthMap.put("192.168.1.18", 1);
    serverWeigthMap.put("192.168.1.19", 2);
  }
   Integer pos = 0;
   public String roundRobin()
    {
      //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題
      Map<String,Integer> serverMap = new HashMap<String,Integer>();
      serverMap.putAll(serverWeigthMap);
      //獲取ip列表list
      Set<String> keySet = serverMap.keySet();
      ArrayList<String> keyList = new ArrayList<String>();
      keyList.addAll(keySet);
      
      String server = null;
      
      synchronized (pos) {
        if(pos >=keySet.size()){
          pos = 0;
        }
        server = keyList.get(pos);
        pos ++;
      }
      return server;
    }
    
    public static void main(String[] args) {
      TestRoundRobin robin = new TestRoundRobin();
      for (int i = 0; i < 20; i++) {
        String serverIp = robin.roundRobin();
        System.out.println(serverIp);
      }
    }
}
Copy after login


Weighted polling:


##

package class2.zookeeper.loadbalance;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;

/**
 * 加權隨機载均衡算法
 * @author guoy
 *
 */
public class TestWeightRandom {
  
  static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>();

   static{
    serverWeigthMap.put("192.168.1.12", 1);
    serverWeigthMap.put("192.168.1.13", 1);
    serverWeigthMap.put("192.168.1.14", 2);
    serverWeigthMap.put("192.168.1.15", 2);
    serverWeigthMap.put("192.168.1.16", 3);
    serverWeigthMap.put("192.168.1.17", 3);
    serverWeigthMap.put("192.168.1.18", 1);
    serverWeigthMap.put("192.168.1.19", 2);
  }

  public static String weightRandom()
  {
    //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題
    Map<String,Integer> serverMap = new HashMap<String,Integer>();
    serverMap.putAll(serverWeigthMap);
    //獲取ip列表list
    Set<String> keySet = serverMap.keySet();
    Iterator<String> it = keySet.iterator();

    List<String> serverList = new ArrayList<String>();

    while (it.hasNext()) {
      String server = it.next();
      Integer weight = serverMap.get(server);
      for (int i = 0; i < weight; i++) {
        serverList.add(server);
      }
    }    
    Random random = new Random();
    int randomPos = random.nextInt(serverList.size());
    
    String server = serverList.get(randomPos);
    return server;
  }
  
  public static void main(String[] args) {
    String serverIp = weightRandom();
    System.out.println(serverIp);
  }
}
Copy after login
Copy after login


Random:



package class2.zookeeper.loadbalance;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;
import java.util.Set;

/**
 * 隨機负载均衡算法
 * @author guoy
 *
 */
public class TestRandom {
  
  static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>();

   static{
    serverWeigthMap.put("192.168.1.12", 1);
    serverWeigthMap.put("192.168.1.13", 1);
    serverWeigthMap.put("192.168.1.14", 2);
    serverWeigthMap.put("192.168.1.15", 2);
    serverWeigthMap.put("192.168.1.16", 3);
    serverWeigthMap.put("192.168.1.17", 3);
    serverWeigthMap.put("192.168.1.18", 1);
    serverWeigthMap.put("192.168.1.19", 2);
  }

  public static String random()
  {
    //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題
    Map<String,Integer> serverMap = new HashMap<String,Integer>();
    serverMap.putAll(serverWeigthMap);
    //獲取ip列表list
    Set<String> keySet = serverMap.keySet();
    ArrayList<String> keyList = new ArrayList<String>();
    keyList.addAll(keySet);
    
    Random random = new Random();
    int randomPos = random.nextInt(keyList.size());
    
    String server = keyList.get(randomPos);
    return server;
  }
  
  public static void main(String[] args) {
    String serverIp = random();
    System.out.println(serverIp);
  }
}
Copy after login


Weighted random:



package class2.zookeeper.loadbalance;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Set;

/**
 * 加權隨機载均衡算法
 * @author guoy
 *
 */
public class TestWeightRandom {
  
  static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>();

   static{
    serverWeigthMap.put("192.168.1.12", 1);
    serverWeigthMap.put("192.168.1.13", 1);
    serverWeigthMap.put("192.168.1.14", 2);
    serverWeigthMap.put("192.168.1.15", 2);
    serverWeigthMap.put("192.168.1.16", 3);
    serverWeigthMap.put("192.168.1.17", 3);
    serverWeigthMap.put("192.168.1.18", 1);
    serverWeigthMap.put("192.168.1.19", 2);
  }

  public static String weightRandom()
  {
    //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題
    Map<String,Integer> serverMap = new HashMap<String,Integer>();
    serverMap.putAll(serverWeigthMap);
    //獲取ip列表list
    Set<String> keySet = serverMap.keySet();
    Iterator<String> it = keySet.iterator();

    List<String> serverList = new ArrayList<String>();

    while (it.hasNext()) {
      String server = it.next();
      Integer weight = serverMap.get(server);
      for (int i = 0; i < weight; i++) {
        serverList.add(server);
      }
    }    
    Random random = new Random();
    int randomPos = random.nextInt(serverList.size());
    
    String server = serverList.get(randomPos);
    return server;
  }
  
  public static void main(String[] args) {
    String serverIp = weightRandom();
    System.out.println(serverIp);
  }
}
Copy after login
Copy after login


ip hash:



package class2.zookeeper.loadbalance;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * 负载均衡 ip_hash算法
 * @author guoy
 *
 */
public class TestIpHash {

  
  static Map<String,Integer> serverWeigthMap = new HashMap<String,Integer>();

   static{
    serverWeigthMap.put("192.168.1.12", 1);
    serverWeigthMap.put("192.168.1.13", 1);
    serverWeigthMap.put("192.168.1.14", 2);
    serverWeigthMap.put("192.168.1.15", 2);
    serverWeigthMap.put("192.168.1.16", 3);
    serverWeigthMap.put("192.168.1.17", 3);
    serverWeigthMap.put("192.168.1.18", 1);
    serverWeigthMap.put("192.168.1.19", 2);
  }

   /**
   * 获取请求服务器地址
   * @param remoteIp 负载均衡服务器ip
   * @return
   */
  public static String ipHash(String remoteIp)
  {
    //重新建立一個map,避免出現由於服務器上線和下線導致的並發問題
    Map<String,Integer> serverMap = new HashMap<String,Integer>();
    serverMap.putAll(serverWeigthMap);
    //獲取ip列表list
    Set<String> keySet = serverMap.keySet();
    ArrayList<String> keyList = new ArrayList<String>();
    keyList.addAll(keySet);
    
    int hashCode =remoteIp.hashCode();
    int serverListSize = keyList.size();
    int serverPos = hashCode % serverListSize;
    
    return keyList.get(serverPos);
  }
  
  public static void main(String[] args) {
    String serverIp = ipHash("192.168.1.12");
    System.out.println(serverIp);
  }

}
Copy after login


The above is the entire content of this article, I hope It will be helpful to everyone's learning, and I hope everyone will support the PHP Chinese website.

For more articles related to several algorithms for load balancing in Java, please pay attention to the PHP Chinese website!


Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to optimize TCP/IP performance and network performance of Linux systems How to optimize TCP/IP performance and network performance of Linux systems Nov 07, 2023 am 11:15 AM

In the field of modern computers, the TCP/IP protocol is the basis for network communication. As an open source operating system, Linux has become the preferred operating system used by many businesses and organizations. However, as network applications and services become more and more critical components of business, administrators often need to optimize network performance to ensure fast and reliable data transfer. This article will introduce how to improve the network transmission speed of Linux systems by optimizing TCP/IP performance and network performance of Linux systems. This article will discuss a

Failover and recovery mechanism in Nginx load balancing solution Failover and recovery mechanism in Nginx load balancing solution Oct 15, 2023 am 11:14 AM

Introduction to the failover and recovery mechanism in the Nginx load balancing solution: For high-load websites, the use of load balancing is one of the important means to ensure high availability of the website and improve performance. As a powerful open source web server, Nginx's load balancing function has been widely used. In load balancing, how to implement failover and recovery mechanisms is an important issue that needs to be considered. This article will introduce the failover and recovery mechanism in Nginx load balancing and give specific code examples. 1. Failover mechanism

High availability and disaster recovery solution for Nginx load balancing solution High availability and disaster recovery solution for Nginx load balancing solution Oct 15, 2023 am 11:43 AM

High Availability and Disaster Recovery Solution of Nginx Load Balancing Solution With the rapid development of the Internet, the high availability of Web services has become a key requirement. In order to achieve high availability and disaster tolerance, Nginx has always been one of the most commonly used and reliable load balancers. In this article, we will introduce Nginx’s high availability and disaster recovery solutions and provide specific code examples. High availability of Nginx is mainly achieved through the use of multiple servers. As a load balancer, Nginx can distribute traffic to multiple backend servers to

Dynamic failure detection and load weight adjustment strategy in Nginx load balancing solution Dynamic failure detection and load weight adjustment strategy in Nginx load balancing solution Oct 15, 2023 pm 03:54 PM

Dynamic failure detection and load weight adjustment strategies in the Nginx load balancing solution require specific code examples. Introduction In high-concurrency network environments, load balancing is a common solution that can effectively improve the availability and performance of the website. Nginx is an open source, high-performance web server that provides powerful load balancing capabilities. This article will introduce two important features in Nginx load balancing, dynamic failure detection and load weight adjustment strategy, and provide specific code examples. 1. Dynamic failure detection Dynamic failure detection

Building a high-availability load balancing system: Best practices for Nginx Proxy Manager Building a high-availability load balancing system: Best practices for Nginx Proxy Manager Sep 27, 2023 am 08:22 AM

Building a high-availability load balancing system: Best practices for NginxProxyManager Introduction: In the development of Internet applications, the load balancing system is one of the essential components. It can achieve high concurrency and high availability services by distributing requests to multiple servers. NginxProxyManager is a commonly used load balancing software. This article will introduce how to use NginxProxyManager to build a high-availability load balancing system and provide

Application of load balancing strategy in Java framework performance optimization Application of load balancing strategy in Java framework performance optimization May 31, 2024 pm 08:02 PM

Load balancing strategies are crucial in Java frameworks for efficient distribution of requests. Depending on the concurrency situation, different strategies have different performance: Polling method: stable performance under low concurrency. Weighted polling method: The performance is similar to the polling method under low concurrency. Least number of connections method: best performance under high concurrency. Random method: simple but poor performance. Consistent Hashing: Balancing server load. Combined with practical cases, this article explains how to choose appropriate strategies based on performance data to significantly improve application performance.

Using Nginx Proxy Manager to implement reverse proxy load balancing strategy Using Nginx Proxy Manager to implement reverse proxy load balancing strategy Sep 26, 2023 pm 12:05 PM

Use NginxProxyManager to implement reverse proxy load balancing strategy NginxProxyManager is an Nginx-based proxy management tool that can help us easily implement reverse proxy and load balancing. By configuring NginxProxyManager, we can distribute requests to multiple backend servers to achieve load balancing and improve system availability and performance. 1. Install and configure NginxProxyManager

Backend server health check and dynamic adjustment in Nginx load balancing solution Backend server health check and dynamic adjustment in Nginx load balancing solution Oct 15, 2023 am 11:37 AM

Backend server health check and dynamic adjustment in the Nginx load balancing solution require specific code examples Summary: In the Nginx load balancing solution, the health status of the backend server is an important consideration. This article will introduce how to use Nginx's health check module and dynamic adjustment module to implement health check and dynamic adjustment of the back-end server, and give specific code examples. Introduction In modern application architecture, load balancing is one of the commonly used solutions to improve application performance and reliability. Ngi

See all articles