How to use the heapq module in Python

高洛峰
Release: 2017-03-01 14:12:04
Original
1862 people have browsed it

The heapq module provides heap algorithms. heapq is a tree data structure in which child nodes and parent nodes are sorted. This module provides heap[k]

Print heapq type

import math 
import random
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=' '):
   output = StringIO()
   last_row = -1
   for i, n in enumerate(tree):
     if i:
       row = int(math.floor(math.log(i+1, 2)))
     else:
       row = 0
     if row != last_row:
       output.write('\n')
     columns = 2**row
     col_width = int(math.floor((total_width * 1.0) / columns))
     output.write(str(n).center(col_width, fill))
     last_row = row
   print output.getvalue()
   print '-' * total_width
   print 
   return

data = random.sample(range(1,8), 7)
print 'data: ', data
show_tree(data)
Copy after login

Print result

data: [3, 2, 6, 5, 4, 7, 1]

     3           
  2      6      
5    4  7     1   
-------------------------
heapq.heappush(heap, item)
Copy after login

Push an element into the heap and modify the above code

heap = []
data = random.sample(range(1,8), 7)
print 'data: ', data

for i in data:
  print 'add %3d:' % i
  heapq.heappush(heap, i)
  show_tree(heap)
Copy after login

Print the result

data: [6, 1, 5, 4, 3, 7, 2]
add  6:
         6         
 ------------------------------------
add  1:
      1 
   6         
------------------------------------
add  5:
      1 
   6       5       
------------------------------------
add  4:
        1 
    4       5       
  6
------------------------------------
add  3:
        1 
    3       5       
  6    4
------------------------------------
add  7:
        1 
    3        5       
  6    4    7
------------------------------------
add  2:
        1 
    3        2       
  6    4    7    5
------------------------------------
Copy after login

It can be understood from the results that the elements of the child node are larger than the elements of the parent node. Sibling nodes will not be sorted.

heapq.heapify(list)

Convert the list type to heap and rearrange the list in linear time.

print 'data: ', data
heapq.heapify(data)
print 'data: ', data

show_tree(data)
Copy after login

Print results

data: [2, 7, 4, 3, 6, 5, 1]
data: [1, 3, 2, 7, 6, 5, 4]

      1         
   3         2     
7    6    5    4  
------------------------------------
heapq.heappop(heap)
Copy after login

Delete and return the smallest element in the heap, by heapify() and heappop() to sort.

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

heap = []
while data:
  i = heapq.heappop(data)
  print 'pop %3d:' % i
  show_tree(data)
  heap.append(i)
print 'heap: ', heap
Copy after login

Print results

data: [4, 1, 3, 7, 5, 6, 2]

         1
    4         2
  7    5    6    3
------------------------------------

pop  1:
         2
    4         3
  7    5    6
------------------------------------
pop  2:
         3
    4         6
  7    5
------------------------------------
pop  3:
         4
    5         6
  7
------------------------------------
pop  4:
         5
    7         6
------------------------------------
pop  5:
         6
    7
------------------------------------
pop  6:
        7
------------------------------------
pop  7:

------------------------------------
heap: [1, 2, 3, 4, 5, 6, 7]
Copy after login

You can see the sorted heap.

heapq.heapreplace(iterable, n)

Removes the existing element and replaces it with a new value.

data = random.sample(range(1, 8), 7)
print 'data: ', data
heapq.heapify(data)
show_tree(data)

for n in [8, 9, 10]:
  smallest = heapq.heapreplace(data, n)
  print 'replace %2d with %2d:' % (smallest, n)
  show_tree(data)
Copy after login

Print results

data: [7, 5, 4, 2, 6, 3, 1]

         1
    2         3
  5    6    7    4
------------------------------------

replace 1 with 8:

         2
    5         3
  8    6    7    4
------------------------------------

replace 2 with 9:

         3
    5         4
  8    6    7    9
------------------------------------

replace 3 with 10:

         4
    5         7
  8    6    10    9
------------------------------------
Copy after login

heapq.nlargest(n, iterable ) and heapq.nsmallest(n, iterable)

Return the n maximum and minimum values ​​in the list

data = range(1,6)
l = heapq.nlargest(3, data)
print l     # [5, 4, 3]

s = heapq.nsmallest(3, data)
print s     # [1, 2, 3]
Copy after login

PS: A calculation question
Construct a minimum heap code example with the number of elements K=5:

#!/usr/bin/env python 
# -*- encoding: utf-8 -*- 
# Author: kentzhan 
# 
 
import heapq 
import random 
 
heap = [] 
heapq.heapify(heap) 
for i in range(15): 
 item = random.randint(10, 100) 
 print "comeing ", item, 
 if len(heap) >= 5: 
  top_item = heap[0] # smallest in heap 
  if top_item < item: # min heap 
   top_item = heapq.heappop(heap) 
   print "pop", top_item, 
   heapq.heappush(heap, item) 
   print "push", item, 
 else: 
  heapq.heappush(heap, item) 
  print "push", item, 
 pass 
 print heap 
pass 
print heap 
 
print "sort" 
heap.sort() 
 
print heap
Copy after login

Result:

How to use the heapq module in Python

For more articles related to the usage of the heapq module in Python, please pay attention to the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template