Python运行报错UnicodeDecodeError
Python2.7在Windows上有一个bug,运行报错:
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc4 in position 33: ordinal not in range(128)
解决方案如下:
编辑Python27\Lib\mimetypes.py文件,全选,替换为以下patch后的正确脚本,或者直接依据此patch修改:
"""Guess the MIME type of a file. This module defines two useful functions: guess_type(url, strict=1) -- guess the MIME type and encoding of a URL. guess_extension(type, strict=1) -- guess the extension for a given MIME type. It also contains the following, for tuning the behavior: Data: knownfiles -- list of files to parse inited -- flag set when init() has been called suffix_map -- dictionary mapping suffixes to suffixes encodings_map -- dictionary mapping suffixes to encodings types_map -- dictionary mapping suffixes to types Functions: init([files]) -- parse a list of files, default knownfiles (on Windows, the default values are taken from the registry) read_mime_types(file) -- parse one file, return a dictionary or None """ from itertools import count import os import sys import posixpath import urllib try: import _winreg except ImportError: _winreg = None __all__ = [ "guess_type","guess_extension","guess_all_extensions", "add_type","read_mime_types","init" ] knownfiles = [ "/etc/mime.types", "/etc/httpd/mime.types", # Mac OS X "/etc/httpd/conf/mime.types", # Apache "/etc/apache/mime.types", # Apache 1 "/etc/apache2/mime.types", # Apache 2 "/usr/local/etc/httpd/conf/mime.types", "/usr/local/lib/netscape/mime.types", "/usr/local/etc/httpd/conf/mime.types", # Apache 1.2 "/usr/local/etc/mime.types", # Apache 1.3 ] inited = False _db = None class MimeTypes: """MIME-types datastore. This datastore can handle information from mime.types-style files and supports basic determination of MIME type from a filename or URL, and can guess a reasonable extension given a MIME type. """ def __init__(self, filenames=(), strict=True): if not inited: init() self.encodings_map = encodings_map.copy() self.suffix_map = suffix_map.copy() self.types_map = ({}, {}) # dict for (non-strict, strict) self.types_map_inv = ({}, {}) for (ext, type) in types_map.items(): self.add_type(type, ext, True) for (ext, type) in common_types.items(): self.add_type(type, ext, False) for name in filenames: self.read(name, strict) def add_type(self, type, ext, strict=True): """Add a mapping between a type and an extension. When the extension is already known, the new type will replace the old one. When the type is already known the extension will be added to the list of known extensions. If strict is true, information will be added to list of standard types, else to the list of non-standard types. """ self.types_map[strict][ext] = type exts = self.types_map_inv[strict].setdefault(type, []) if ext not in exts: exts.append(ext) def guess_type(self, url, strict=True): """Guess the type of a file based on its URL. Return value is a tuple (type, encoding) where type is None if the type can't be guessed (no or unknown suffix) or a string of the form type/subtype, usable for a MIME Content-type header; and encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip). The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case sensitive, then case insensitive. The suffixes .tgz, .taz and .tz (case sensitive!) are all mapped to '.tar.gz'. (This is table-driven too, using the dictionary suffix_map.) Optional `strict' argument when False adds a bunch of commonly found, but non-standard types. """ scheme, url = urllib.splittype(url) if scheme == 'data': # syntax of data URLs: # dataurl := "data:" [ mediatype ] [ ";base64" ] "," data # mediatype := [ type "/" subtype ] *( ";" parameter ) # data := *urlchar # parameter := attribute "=" value # type/subtype defaults to "text/plain" comma = url.find(',') if comma < 0: # bad data URL return None, None semi = url.find(';', 0, comma) if semi >= 0: type = url[:semi] else: type = url[:comma] if '=' in type or '/' not in type: type = 'text/plain' return type, None # never compressed, so encoding is None base, ext = posixpath.splitext(url) while ext in self.suffix_map: base, ext = posixpath.splitext(base + self.suffix_map[ext]) if ext in self.encodings_map: encoding = self.encodings_map[ext] base, ext = posixpath.splitext(base) else: encoding = None types_map = self.types_map[True] if ext in types_map: return types_map[ext], encoding elif ext.lower() in types_map: return types_map[ext.lower()], encoding elif strict: return None, encoding types_map = self.types_map[False] if ext in types_map: return types_map[ext], encoding elif ext.lower() in types_map: return types_map[ext.lower()], encoding else: return None, encoding def guess_all_extensions(self, type, strict=True): """Guess the extensions for a file based on its MIME type. Return value is a list of strings giving the possible filename extensions, including the leading dot ('.'). The extension is not guaranteed to have been associated with any particular data stream, but would be mapped to the MIME type `type' by guess_type(). Optional `strict' argument when false adds a bunch of commonly found, but non-standard types. """ type = type.lower() extensions = self.types_map_inv[True].get(type, []) if not strict: for ext in self.types_map_inv[False].get(type, []): if ext not in extensions: extensions.append(ext) return extensions def guess_extension(self, type, strict=True): """Guess the extension for a file based on its MIME type. Return value is a string giving a filename extension, including the leading dot ('.'). The extension is not guaranteed to have been associated with any particular data stream, but would be mapped to the MIME type `type' by guess_type(). If no extension can be guessed for `type', None is returned. Optional `strict' argument when false adds a bunch of commonly found, but non-standard types. """ extensions = self.guess_all_extensions(type, strict) if not extensions: return None return extensions[0] def read(self, filename, strict=True): """ Read a single mime.types-format file, specified by pathname. If strict is true, information will be added to list of standard types, else to the list of non-standard types. """ with open(filename) as fp: self.readfp(fp, strict) def readfp(self, fp, strict=True): """ Read a single mime.types-format file. If strict is true, information will be added to list of standard types, else to the list of non-standard types. """ while 1: line = fp.readline() if not line: break words = line.split() for i in range(len(words)): if words[i][0] == '#': del words[i:] break if not words: continue type, suffixes = words[0], words[1:] for suff in suffixes: self.add_type(type, '.' + suff, strict) def read_windows_registry(self, strict=True): """ Load the MIME types database from Windows registry. If strict is true, information will be added to list of standard types, else to the list of non-standard types. """ # Windows only if not _winreg: return def enum_types(mimedb): for i in count(): try: yield _winreg.EnumKey(mimedb, i) except EnvironmentError: break default_encoding = sys.getdefaultencoding() with _winreg.OpenKey(_winreg.HKEY_CLASSES_ROOT, '') as hkcr: for subkeyname in enum_types(hkcr): try: with _winreg.OpenKey(hkcr, subkeyname) as subkey: # Only check file extensions if not subkeyname.startswith("."): continue # raises EnvironmentError if no 'Content Type' value mimetype, datatype = _winreg.QueryValueEx( subkey, 'Content Type') if datatype != _winreg.REG_SZ: continue try: mimetype = mimetype.encode(default_encoding) subkeyname = subkeyname.encode(default_encoding) except UnicodeEncodeError: continue self.add_type(mimetype, subkeyname, strict) except EnvironmentError: continue def guess_type(url, strict=True): """Guess the type of a file based on its URL. Return value is a tuple (type, encoding) where type is None if the type can't be guessed (no or unknown suffix) or a string of the form type/subtype, usable for a MIME Content-type header; and encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip). The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case sensitive, then case insensitive. The suffixes .tgz, .taz and .tz (case sensitive!) are all mapped to ".tar.gz". (This is table-driven too, using the dictionary suffix_map). Optional `strict' argument when false adds a bunch of commonly found, but non-standard types. """ if _db is None: init() return _db.guess_type(url, strict) def guess_all_extensions(type, strict=True): """Guess the extensions for a file based on its MIME type. Return value is a list of strings giving the possible filename extensions, including the leading dot ('.'). The extension is not guaranteed to have been associated with any particular data stream, but would be mapped to the MIME type `type' by guess_type(). If no extension can be guessed for `type', None is returned. Optional `strict' argument when false adds a bunch of commonly found, but non-standard types. """ if _db is None: init() return _db.guess_all_extensions(type, strict) def guess_extension(type, strict=True): """Guess the extension for a file based on its MIME type. Return value is a string giving a filename extension, including the leading dot ('.'). The extension is not guaranteed to have been associated with any particular data stream, but would be mapped to the MIME type `type' by guess_type(). If no extension can be guessed for `type', None is returned. Optional `strict' argument when false adds a bunch of commonly found, but non-standard types. """ if _db is None: init() return _db.guess_extension(type, strict) def add_type(type, ext, strict=True): """Add a mapping between a type and an extension. When the extension is already known, the new type will replace the old one. When the type is already known the extension will be added to the list of known extensions. If strict is true, information will be added to list of standard types, else to the list of non-standard types. """ if _db is None: init() return _db.add_type(type, ext, strict) def init(files=None): global suffix_map, types_map, encodings_map, common_types global inited, _db inited = True # so that MimeTypes.__init__() doesn't call us again db = MimeTypes() if files is None: if _winreg: db.read_windows_registry() files = knownfiles for file in files: if os.path.isfile(file): db.read(file) encodings_map = db.encodings_map suffix_map = db.suffix_map types_map = db.types_map[True] common_types = db.types_map[False] # Make the DB a global variable now that it is fully initialized _db = db def read_mime_types(file): try: f = open(file) except IOError: return None db = MimeTypes() db.readfp(f, True) return db.types_map[True] def _default_mime_types(): global suffix_map global encodings_map global types_map global common_types suffix_map = { '.tgz': '.tar.gz', '.taz': '.tar.gz', '.tz': '.tar.gz', '.tbz2': '.tar.bz2', '.txz': '.tar.xz', } encodings_map = { '.gz': 'gzip', '.Z': 'compress', '.bz2': 'bzip2', '.xz': 'xz', } # Before adding new types, make sure they are either registered with IANA, # at http://www.php.cn/ # or extensions, i.e. using the x- prefix # If you add to these, please keep them sorted! types_map = { '.a' : 'application/octet-stream', '.ai' : 'application/postscript', '.aif' : 'audio/x-aiff', '.aifc' : 'audio/x-aiff', '.aiff' : 'audio/x-aiff', '.au' : 'audio/basic', '.avi' : 'video/x-msvideo', '.bat' : 'text/plain', '.bcpio' : 'application/x-bcpio', '.bin' : 'application/octet-stream', '.bmp' : 'image/x-ms-bmp', '.c' : 'text/plain', # Duplicates

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex
