Home > Backend Development > Python Tutorial > Analysis and summary of methods for finding arithmetic square roots and divisors in Python

Analysis and summary of methods for finding arithmetic square roots and divisors in Python

高洛峰
Release: 2017-03-07 15:56:04
Original
2287 people have browsed it

This article mainly introduces the relevant information summarized in Python's method of finding square roots and divisors of arithmetic numbers. Friends in need can refer to it

1. Find the arithmetic square root

a=
x=int(raw_input('Enter a number:'))
if x >= :
while a*a < x:
a = a + 
if a*a != x:
print x,&#39;is not a perfect square&#39;
else:
print a
else:
print x,&#39;is a negative number&#39;
Copy after login

2. Find the divisor

Method one:

pisor = [ ]
x=int(raw_input(&#39;Enter a number:&#39;))
i= 
while i<=x: 
if x%i ==:
pisor.append(i)
i = i +
print &#39;pisor:&#39;,pisor
Copy after login

Method two:

pisor = [ ]
x=int(raw_input(&#39;Enter a number:&#39;))
for i in range(,x+):
if x%i ==:
pisor.append(i) # 此行也可以换成 pisor = pisor + [i]
print &#39;pisor:&#39;,pisor
Copy after login

Let me introduce you to the Python sqrt() function

Description

sqrt() method returns the square root of the number x.

Syntax

The following is the syntax of the sqrt() method:

import math
math.sqrt( x )
Copy after login


Note: sqrt() cannot be accessed directly. You need to import the math module and call this method through a static object.

Parameters

x -- Numeric expression.

Return value

Returns the square root of the number x.

Example

The following shows an example of using the sqrt() method:

#!/usr/bin/python
import math # This will import math module
print "math.sqrt(100) : ", math.sqrt(100)
print "math.sqrt(7) : ", math.sqrt(7)
print "math.sqrt(math.pi) : ", math.sqrt(math.pi)
Copy after login

Above After running the example, the output result is:

math.sqrt(100) : 10.0
math.sqrt(7) : 2.64575131106
math.sqrt(math.pi) : 1.77245385091
Copy after login

For more analysis and summary of Python methods for finding square roots and divisors of arithmetic, please pay attention to the PHP Chinese website for related articles!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template