


Share five ways to use configuration files in the python Flask framework
This article shares five ways to use configuration file loading in the python Flask framework
Several ways to manage Flask configuration files:
Method 1: Directly configure
#!/usr/bin/env python # encoding: utf-8 from flask import Flask import time app = Flask(__name__) app.config['SEND_FILE_MAX_AGE_DEFAULT']=time.asctime() app.config['HOST']='www.aolens.cn' print app.config @app.route('/') def hello_world(): return 'Hello World! %s %s' %(app.config.get('SEND_FILE_MAX_AGE_DEFAULT'),app.config.get('HOST')) if __name__=='__main__': app.run()
to see a global large dictionary:
Method 2: Load configuration through environment variables
Create an environment variable file. config.py
#内容为键值,不一定要是大字典里的 HOST=localhost POST=3306 #自己创建 export CONFIG_SET=./config.py 代码中: app.config.from_envvar('CONFIG_SET) @app.route('/') def hello_world(): return "hello world %s %s" %(app.config.get('HOST'),app.config.get('POST'))
Method 3: Loading through objects (commonly used)--from_object()
config object code--using the config structure based on class inheritance to save the default configuration Config class As a base class, other classes inherit from it.
Create a file Configlist.py
#!/usr/bin/env python # encoding: utf-8 class Config(): #父类可以被下边的类继承到AUTHOR参数 AUTHOR='aolens' class DevelopmentConfig(Config): DEBUG = True SQL_URI='mysql://root:password@192.168.1.101/test' class ProductionConfig(Config): SQL_URI='mysql://root:password@192.168.1.101/devops' HOST='localhost' config ={ #将类写成字典的形式存储 'dev':DevelopmentConfig, 'pro':ProductionConfig, 'default':DevelopmentConfig }
Call Configlist.py
#!/usr/bin/env python # encoding: utf-8 from flask import Flask from configlist import * import time app = Flask(__name__) #对象加载,from config import * #第一种加载方式 app.config.from_object(ProductionConfig) #第二种加载方式,加载简写的config短也可以加载的到 #app.config.from_object(config['pro']) print app.config @app.route('/') #/表示URL后边+/,也可使其他URI,访问就是IP+URI def hello_world(): return 'Hello World! %s %s %s' %(app.config.get('SQL_URI'),app.config.get('HOST'),app.config.get('AUTHOR')) if __name__=='__main__': app.run()
Browser access result:
Hello World! mysql://root: password@192.168.1.101/devops localhost aolens
如何判断测试环境还是生产: #!/usr/bin/env python # encoding: utf-8 from flask import Flask from config2 import * import os import time app = Flask(__name__) if os.path.exists("./pro"): app.config.from_object(config['pro']) elif os.path.exists("./dev"): app.config.from_object(DevelopmentConfig) print app.config @app.route('/TEST') def hello_world(): return 'Hello World! %s %s %s' %(app.config.get('SQL_URI'),app.config.get('HOST'),app.config.get('AUTHOR')) if __name__=='__main__': app.run()
Method 4: Through the configuration file--app.config.from_pyfile, the config file must be in the app directory
vim confile.py HOST='locolhost' PORT=10000 AUTHOR='aolens' from flask import Flask app.config.from_pyfile('./confile.py') #加载配置文件 print app.config @app.route('/TEST') def hello_world(): return 'Hello World! %s %s %s' %(app.config.get('PORT'),app.config.get('HOST'),app.config.get('AUTHOR')) if __name__=='__main__': app.run()
Method 5: It is the right method An improvement of ConfigParser module configuration file management
ConfigParser introduction:
is a package used to read configuration files. The brackets [] in the configuration file include session. Below the section is the configuration file content similar to key-value.
The format is as follows:
vim test.conf [api] #session port=11111 #option path=/data/api/log [web] port=1002 path=/data/web/log
Usage: configure.py
import ConfigParser def getconfig(filename,section=''): cf=ConfigParser.ConfigParser() #实例化 cf.read(filename) #读取配置文件 cf_items = dict(cf.items(section)) if cf.has_section(section) else {} #判断SECTION是否存在,存在把数据存入字典,没有返回空字典 return cf_items if __name__=='__main__': conf =getconfig('test.conf','web') print conf print conf['port'] print conf.get('path')
Running result:
{'path': '/data/web/log' , 'port': '1002'}
1002
/data/web/log
Call: demo.py
#!/usr/bin/env python # encoding: utf-8 from confile import getconfig from flask import Flask app = Flask(__name__) #直接配置 @app.route('/TEST') def hello_world(): conf=getconfig('test.conf','api') return 'Hello World! %s' %(conf['port']) if __name__=='__main__': app.run()
Result:
Hello World! 11111 #option
The above is the detailed content of Share five ways to use configuration files in the python Flask framework. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex
