


Detailed explanation of how Java uses ExecutorService to execute a large number of threads synchronously (picture)
This article mainly introduces Java's use of ExecutorService to synchronously execute a large number of threads. ExecutorService can maintain the stability of our large number of threads when operating critical resources.
Since Java 1.5, the official website has launched a class like Executor. This class can maintain the stability of our large number of threads when operating critical resources.
Let’s start with a piece of code:
TestRunnable.java
public class TestRunnable implements Runnable { private String name; public TestRunnable(String name) { this.name = name; } @Override public void run() { while (true) { if (Main.Surplus < 0) return; Main.Surplus--; System.out.println(name + " " + Main.Surplus); } } }
main entrance
public static void main(String[] args) { TestRunnable runnable = new TestRunnable("runnable1"); TestRunnable runnable2 = new TestRunnable("runnable2"); Thread t1 = new Thread(runnable); Thread t2 = new Thread(runnable2); t1.start(); t2.start(); }
In this way, we can see, The data must be messed up. Of course, we can add a synchronized keyword at this time, but this will also cause some minor problems.
I plan to use a Java has a built-in thread management mechanism to solve this problem. The idea of solving this problem is probably that we maintain a thread pool. When there is a request for operation, they all enter the thread pool, and we only open one thread to allow the request to be made. Sequential execution and sequential calling of critical resources are very safe.
import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; public class Main { public static int Surplus = 10; private ExecutorService executor = Executors.newSingleThreadExecutor(); void addTask(Runnable runnable) { executor.execute(runnable); } <V> V addTask(Callable<V> callable) { Future<V> submit = executor.submit(callable); try { return submit.get(); } catch (InterruptedException e) { System.out.println("InterruptedException" + e.toString()); } catch (ExecutionException e) { System.out.println("ExecutionException" + e.toString()); } return null; } public void testAddTask(String name) { addTask(new Runnable() { @Override public void run() { for (int i = 0; i < 3; i++) { if (Main.Surplus <= 0) return; Main.Surplus--; System.out.println(name + " " + Main.Surplus); } } }); } public void testAddTask2(String name) { int count = addTask(new Callable<Integer>() { @Override public Integer call() throws Exception { for (int i = 0; i < 3; i++) { if (Main.Surplus <= 0) return 0; Main.Surplus--; System.out.println(name + " " + Main.Surplus); } return Main.Surplus; } }); } public void close() { executor.shutdown(); } public static void main(String[] args) { Main main = new Main(); main.testAddTask("task1"); main.testAddTask2("task2"); main.testAddTask("task3"); main.testAddTask2("task4"); main.close(); } }
Here, we define two methods, namely addTask and generic addTask. The implementation principles of these two methods are the same. One of them has a callback and the other does not have a callback. , just depends on project requirements.
Then call these two methods respectively, and you can see that the results are very orderly and not chaotic.
The above is the detailed content of Detailed explanation of how Java uses ExecutorService to execute a large number of threads synchronously (picture). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
