Home > Backend Development > Python Tutorial > Detailed explanation of the python code of asynchronous proxy and proxy pool

Detailed explanation of the python code of asynchronous proxy and proxy pool

Y2J
Release: 2017-05-10 11:33:13
Original
1781 people have browsed it

This article mainly introduces the relevant knowledge of Python to implement asynchronous proxy crawlers and proxy pools. It has a very good reference value. Let’s take a look at it with the editor.

Using python asyncio to implement an asynchronous proxy pool , crawl the free proxies on the proxy website according to the rules, store them in redis after verifying their validity, regularly expand the number of proxies and check the validity of the proxies in the pool, and remove invalid proxies. At the same time, a server is implemented using aiohttp, and other programs can obtain the proxy from the proxy pool by accessing the corresponding URL.

Source code

Github

Environment

  • Python 3.5+

  • Redis

  • PhantomJS(optional)

  • Supervisord(optional )

Because the code uses asyncio's async and await syntax extensively, they are only provided in Python3.5, so it is best to use Python3.5 and above. I Python3.6 is used.

Dependencies

  • redis

  • aiohttp

  • bs4

  • ##lxml

  • ##requests
  • selenium
  • The selenium package is mainly used to operate PhantomJS.

The code is explained below.

1. Crawler part

Core code

async def start(self):
 for rule in self._rules:
 parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理
 logger.debug('{0} crawler started'.format(rule.rule_name))
 if not rule.use_phantomjs:
  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面
 else:
  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,
rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取
 await self._pages.join()
 parser.cancel()
 logger.debug('{0} crawler finished'.format(rule.rule_name))
Copy after login
The core code above is actually A producer-consumer

model

implemented using asyncio.Queue. The following is a simple implementation of this model:

Run the above code, a possible output is as follows:

produce 1
produce 2
consume 1
produce 3
produce 4
consume 2
produce 5
consume 3
consume 4
consume 5
Copy after login

Crawling pages

async def page_download(urls, pages, flag):
 url_generator = urls
 async with aiohttp.ClientSession() as session:
 for url in url_generator:
  if flag.is_set():
  break
  await asyncio.sleep(uniform(delay - 0.5, delay + 1))
  logger.debug('crawling proxy web page {0}'.format(url))
  try:
  async with session.get(url, headers=headers, timeout=10) as response:
   page = await response.text()
   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection
   await pages.put(parsed)
   url_generator.send(parsed) # 根据当前页面来获取下一页的地址
  except StopIteration:
  break
  except asyncio.TimeoutError:
  logger.error('crawling {0} timeout'.format(url))
  continue # TODO: use a proxy
  except Exception as e:
  logger.error(e)
Copy after login
Using aiohttp to implement web crawling

Function

, most proxy websites can use the above method to crawl, for websites that use js to dynamically generate pages, you can use selenium to control PhantomJS to crawl - this project does not have high requirements for the efficiency of the crawler, and the update frequency of the proxy website is limited, so it is not required For frequent crawling, PhantomJS can be used.

Parse proxyThe easiest way is to use xpath to parse the proxy. If you use the Chrome browser, you can get it directly by right-clicking xpath of the selected page element:

Detailed explanation of the python code of asynchronous proxy and proxy pool

Install

Chrome's extension "XPath Helper" to run and debug## directly on the page #xpath, very convenient:

BeautifulSoup does not support xpath and uses lxml to parse the page. The code is as follows: Detailed explanation of the python code of asynchronous proxy and proxy pool

async def _parse_proxy(self, rule, page):
 ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合
 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合
 if not ips or not ports:
 logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.
  format(len(ips), len(ports), rule.rule_name))
 return
 proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports)
 if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等
 filters = []
 for i, ft in enumerate(rule.filters_xpath):
  field = page.xpath(ft)
  if not field:
  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.
   format(rule.filters[i], rule.rule_name))
  continue
  filters.append(map(lambda x: x.text.strip(), field))
 filters = zip(*filters)
 selector = map(lambda x: x == rule.filters, filters)
 proxies = compress(proxies, selector)
for proxy in proxies:
await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中
Copy after login

Crawler rules

The rules for website crawling, proxy parsing, filtering, and other operations are defined by the rule classes of each proxy website. Metaclasses and base classes are used to manage rule classes. The base class is defined as follows:

class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta):
 start_url = None
 page_count = 0
 urls_format = None
 next_page_xpath = None
 next_page_host = ''
 use_phantomjs = False
 phantomjs_load_flag = None
 filters = ()
 ip_xpath = None
 port_xpath = None
 filters_xpath = ()
Copy after login

The meaning of each parameter is as follows:

start_url

(required)

The starting page of the crawler.

ip_xpath

(required)

XPath rules for crawling IP.

port_xpath

(required)

XPath rules for crawling port numbers.

page_count

The number of crawled pages.

urls_format

Format of page address String

, generate the address of page n through urls_format.format(start_url, n), this It is a relatively common page address format.

next_page_xpath

,

next_page_host Use xpath rules to obtain the url of the next page (commonly the relative path), and combine it with the host to get the next page Page address: next_page_host + url.

use_phantomjs

,

phantomjs_load_flaguse_phantomjs is used to identify whether to use PhantomJS to crawl the website. If used, you need to define phantomjs_load_flag (on the web page A certain element, str type) as a sign that the PhantomJS page has been loaded.

filters

Filter field collection, iterable type. Used to filter proxies.

Crawl the xpath rules of each filter field and correspond to the filter fields in order.

The metaclass CrawlerRuleMeta is used to manage the definition of rule classes. For example: if use_phantomjs=True is defined, phantomjs_load_flag must be defined, otherwise an exception

will be thrown, which will not be described here.

目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的init.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.subclasses()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。

2. 检验部分

免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。

这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。

async def validate(self, proxies):
 logger.debug('validator started')
 while 1:
 proxy = await proxies.get()
 async with aiohttp.ClientSession() as session:
  try:
  real_proxy = 'http://' + proxy
  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:
   self._conn.put(proxy)
  except Exception as e:
  logger.error(e)
 proxies.task_done()
Copy after login

3. server部分

使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:

Detailed explanation of the python code of asynchronous proxy and proxy pool

  • 访问host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';

  • 访问host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";

  • 访问host:port/count来获取代理池的容量,如:'42'。

因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。

返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。

返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。

这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。

4. 运行

将整个代理池的功能分成了3个独立的部分:

proxypool

定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。

proxyvalidator

用于定期检验代理池中的代理,移除失效代理。

proxyserver

启动server。

这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:

; supervisord.conf
[unix_http_server]
file=/tmp/supervisor.sock 

[inet_http_server]  
port=127.0.0.1:9001 

[supervisord]
logfile=/tmp/supervisord.log 
logfile_maxbytes=5MB 
logfile_backups=10  
loglevel=debug  
pidfile=/tmp/supervisord.pid 
nodaemon=false  
minfds=1024   
minprocs=200   

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[program:proxyPool]
command=python /path/to/ProxyPool/run_proxypool.py  
redirect_stderr=true
stdout_logfile=NONE

[program:proxyValidator]
command=python /path/to/ProxyPool/run_proxyvalidator.py
redirect_stderr=true  
stdout_logfile=NONE

[program:proxyServer]
command=python /path/to/ProxyPool/run_proxyserver.py
autostart=false
redirect_stderr=true  
stdout_logfile=NONE
Copy after login

因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:

Detailed explanation of the python code of asynchronous proxy and proxy pool

supervisod的官方文档说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。

【相关推荐】

1. Python免费视频教程

2. Python Meets Data Collection Video Tutorial

3. Python Learning Manual

The above is the detailed content of Detailed explanation of the python code of asynchronous proxy and proxy pool. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template