


Detailed introduction to the various methods of JavaScript inheritance and their advantages and disadvantages
This article mainly introduces the various ways and advantages and disadvantages of in-depth understanding of JavaScript inheritance. It has certain reference value. Interested friends can refer to it
Written in front
This article explains the various inheritance methods and advantages and disadvantages of JavaScript.
Note:
is the same as "JavaScript In-depth Creating Objects", more like notes.
Hey, let me sigh again: "JavaScript Advanced Programming" is really well written!
1. Prototype chain inheritance
function Parent () { this.name = 'kevin'; } Parent.prototype.getName = function () { console.log(this.name); } function Child () { } Child.prototype = new Parent(); var child1 = new Child(); console.log(child1.getName()) // kevin
Problem:
1.Referenceproperty of type Shared by all instances, for example:
function Parent () { this.names = ['kevin', 'daisy']; } function Child () { } Child.prototype = new Parent(); var child1 = new Child(); child1.names.push('yayu'); console.log(child1.names); // ["kevin", "daisy", "yayu"] var child2 = new Child(); console.log(child2.names); // ["kevin", "daisy", "yayu"]
2. When creating an instance of Child, parameters cannot be passed to Parent
2. Borrow the constructor (Classic inheritance)
function Parent () { this.names = ['kevin', 'daisy']; } function Child () { Parent.call(this); } var child1 = new Child(); child1.names.push('yayu'); console.log(child1.names); // ["kevin", "daisy", "yayu"] var child2 = new Child(); console.log(child2.names); // ["kevin", "daisy"]
Advantages:
1. Avoid reference type properties being shared by all instances
2. Can be used in Passing parameters to Parent in Child
For example:
function Parent (name) { this.name = name; } function Child (name) { Parent.call(this, name); } var child1 = new Child('kevin'); console.log(child1.name); // kevin var child2 = new Child('daisy'); console.log(child2.name); // daisy
Disadvantages:
Methods are all defined in the constructor, and each time an instance is created, the method will be created.
3. Combination inheritance
Prototype chain inheritance and classic inheritance are two swords in one.
function Parent (name) { this.name = name; this.colors = ['red', 'blue', 'green']; } Parent.prototype.getName = function () { console.log(this.name) } function Child (name, age) { Parent.call(this, name); this.age = age; } Child.prototype = new Parent(); var child1 = new Child('kevin', '18'); child1.colors.push('black'); console.log(child1.name); // kevin console.log(child1.age); // 18 console.log(child1.colors); // ["red", "blue", "green", "black"] var child2 = new Child('daisy', '20'); console.log(child2.name); // daisy console.log(child2.age); // 20 console.log(child2.colors); // ["red", "blue", "green"]
Advantages: Combining the advantages of prototype chain inheritance and constructors, it is the most commonly used inheritance pattern in JavaScript.
4. Prototypal inheritance
function createObj(o) { function F(){} F.prototype = o; return new F(); }
is the simulation implementation of ES5 Object.create, using the passed in object as the prototype of the created object .
Disadvantages:
Attribute values containing reference types will always share the corresponding value, which is the same as prototype chain inheritance.
var person = { name: 'kevin', friends: ['daisy', 'kelly'] } var person1 = createObj(person); var person2 = createObj(person); person1.name = 'person1'; console.log(person2.name); // kevin person1.firends.push('taylor'); console.log(person2.friends); // ["daisy", "kelly", "taylor"]
Note: After modifying the value of person1.name
, the value of person2.name
has not changed, not because of person1
and person2
has an independent name value, but because person1.name = 'person1'
, the name value is added to person1
, not the name value on the prototype is modified. .
5. Parasitic inheritance
Create a function that is only used to encapsulate the inheritance process. This function is used to enhance the object in some form internally. Finally the object is returned.
function createObj (o) { var clone = object.create(o); clone.sayName = function () { console.log('hi'); } return clone; }
Disadvantages: Like the borrowed constructor pattern, a method will be created every time an object is created.
6. Parasitic combined inheritance
For the convenience of everyone’s reading, the code of combined inheritance is repeated here:
function Parent (name) { this.name = name; this.colors = ['red', 'blue', 'green']; } Parent.prototype.getName = function () { console.log(this.name) } function Child (name, age) { Parent.call(this, name); this.age = age; } Child.prototype = new Parent(); var child1 = new Child('kevin', '18'); console.log(child1)
Combined inheritance The biggest disadvantage is that the parent constructor is called twice.
Once when setting the prototype of a subtype instance:
Child.prototype = new Parent();
Once when creating a subtype instance:
var child1 = new Child('kevin', '18');
Recall the simulation implementation of new, in fact, here In the sentence, we will execute:
Parent.call(this, name);
Here, we will call the Parent constructor again.
So, in this example, if we print the child1 object, we will find that both Child.prototype and child1 have an attribute called colors, and the attribute values are ['red', 'blue', 'green'] .
So how can we keep improving and avoid repeated calls this time?
What if we don’t use Child.prototype = new Parent(), but indirectly let Child.prototype access Parent.prototype?
Let’s see how to implement it:
function Parent (name) { this.name = name; this.colors = ['red', 'blue', 'green']; } Parent.prototype.getName = function () { console.log(this.name) } function Child (name, age) { Parent.call(this, name); this.age = age; } // 关键的三步 var F = function () {}; F.prototype = Parent.prototype; Child.prototype = new F(); var child1 = new Child('kevin', '18'); console.log(child1);
Finally, let’s encapsulate this inheritance method:
function object(o) { function F() {} F.prototype = o; return new F(); } function prototype(child, parent) { var prototype = object(parent.prototype); prototype.constructor = child; child.prototype = prototype; } // 当我们使用的时候: prototype(Child, Parent);
To quote the praise of parasitic combined inheritance in "JavaScript Advanced Programming":
The high efficiency of this method reflects that it only calls the Parent constructor once, and therefore avoids creating unnecessary and redundant properties on Parent.prototype. At the same time, the prototype chain remains unchanged; therefore, instanceof and isPrototypeOf can still be used normally. Developers generally believe that parasitic compositional inheritance is the most ideal inheritance paradigm for reference types.
The above is the detailed content of Detailed introduction to the various methods of JavaScript inheritance and their advantages and disadvantages. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



In function inheritance, use "base class pointer" and "derived class pointer" to understand the inheritance mechanism: when the base class pointer points to the derived class object, upward transformation is performed and only the base class members are accessed. When a derived class pointer points to a base class object, a downward cast is performed (unsafe) and must be used with caution.

In today's information age, personal computers play an important role as an indispensable tool in our daily lives. As one of the core software of computers, the operating system affects our usage experience and work efficiency. In the market, Microsoft's Windows operating system has always occupied a dominant position, and now people face the choice between the latest Windows 11 and the old Windows 10. For ordinary consumers, when choosing an operating system, they do not just look at the version number, but also understand its advantages and disadvantages.

Templating: Pros and Cons Templating is a powerful programming technique that allows you to create reusable blocks of code. It offers a range of advantages, but also some disadvantages. Pros: Code Reusability: Templating allows you to create common code that can be reused throughout your application, reducing duplication and maintenance efforts. Consistency: Templating ensures that code snippets are implemented the same way in different locations, improving code consistency and readability. Maintainability: Changes to a template are reflected simultaneously in all code that uses it, simplifying maintenance and updates. Efficiency: Templating saves time and effort because you don't have to write the same code over and over again. Flexibility: Templating allows you to create configurable blocks of code that can be easily adapted to different application needs. shortcoming

JavaServlet is a Java class used to build dynamic web pages and serves as a bridge between client and server. Working principle: receive requests, initialize Servlet, process requests, generate responses and close Servlet. Pros: Portable, scalable, secure and easy to use. Disadvantages: Overhead, coupling, and state management. Practical case: Create a simple Servlet to display the "Hello, Servlet!" message.

The choice of PHP framework depends on project needs and developer skills: Laravel: rich in features and active community, but has a steep learning curve and high performance overhead. CodeIgniter: lightweight and easy to extend, but has limited functionality and less documentation. Symfony: Modular, strong community, but complex, performance issues. ZendFramework: enterprise-grade, stable and reliable, but bulky and expensive to license. Slim: micro-framework, fast, but with limited functionality and a steep learning curve.

C language and Python: analysis of applicable scenarios and advantages and disadvantages In the field of computer programming, C language and Python are two very popular programming languages. They each have unique advantages and disadvantages and are suitable for different scenarios. This article will conduct an in-depth analysis of C language and Python, discussing their applicable scenarios, advantages and disadvantages. 1. C language applicable scenarios: C language is a process-oriented programming language with high efficiency and excellent performance. It is suitable for the development of system software, drivers and embedded systems that require a high degree of control and efficiency.

Inheritance and polymorphism affect the coupling of classes: Inheritance increases coupling because the derived class depends on the base class. Polymorphism reduces coupling because objects can respond to messages in a consistent manner through virtual functions and base class pointers. Best practices include using inheritance sparingly, defining public interfaces, avoiding adding data members to base classes, and decoupling classes through dependency injection. A practical example showing how to use polymorphism and dependency injection to reduce coupling in a bank account application.

Inheritance error debugging tips: Ensure correct inheritance relationships. Use the debugger to step through the code and examine variable values. Make sure to use the virtual modifier correctly. Examine the inheritance diamond problem caused by hidden inheritance. Check for unimplemented pure virtual functions in abstract classes.
