MySQL— pymysql and SQLAlchemy
Directory
1. pymysql
2. SQLAlchemy
1. pymysql
pymsql is a module for operating MySQL in Python. Its usage is as follows MySQLdb is almost the same.
1. Download and install
#在终端直接运行 pip3 install pymysql
2. Use operation
a. Execute SQL
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql # 创建连接conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')# 创建游标cursor = conn.cursor() # 执行SQL,并返回受影响行数effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据conn.commit() # 关闭游标cursor.close()# 关闭连接conn.close()
b. Get the newly created data and increment the ID
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) conn.commit()# 获取最新自增IDnew_id = cursor.lastrowid cursor.close() conn.close()
c. Get the query data
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据row_1 = cursor.fetchone() # 获取前n行数据# row_2 = cursor.fetchmany(3)# 获取所有数据# row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
Note: When fetching data, proceed in order. You can use cursor.scroll(num,mode) to move the cursor position, such as:
cursor.scroll(1,mode='relative') #Move relative to the current position
cursor.scroll(2,mode='absolute') # Relative absolute position movement
d. fetch data type
About default The data obtained is tuple type. If you want to obtain dictionary type data, that is:
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
2. SQLAlchemy
SQLAlchemy is a version of the Python programming language ORM framework, which is built on the database API, uses relational object mapping to perform database operations. In short, it is: convert objects into SQL, and then use the data API to execute SQL and obtain the execution results.
1. Download and install
#在终端直接运行pip3 install SQLAlchemy
2. SQLAlchemy dependencies

MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
For more details, see:
index
.html
3. ORM function usage
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine#表明依赖关系并创建连接,最大连接数为5 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表class Users(Base): __tablename__ = 'users' # 表名 id = Column(Integer, primary_key=True,autoincrement=True) # id列,主键自增 name = Column(String(32)) # name列 extra = Column(String(16)) # extra列 __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), # 创建联合唯一索引 Index('ix_id_name', 'name', 'extra'), # 创建普通索引 ) # 一对多class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 创建外键 # 多对多class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) # 创建外键 group_id = Column(Integer, ForeignKey('group.id')) # 创建外键 def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine)
Note: Another way to set foreign keysForeignKeyConstraint(['other_id'], ['othertable .other_id'])


#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base()# 创建单表class Users(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16))__table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), )def __repr__(self):return "%s-%s" %(self.id, self.name)# 一对多class Favor(Base):__tablename__ = 'favor'nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True)def __repr__(self):return "%s-%s" %(self.nid, self.caption)class Person(Base):__tablename__ = 'person'nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid"))# 与生成表结构无关,仅用于查询方便favor = relationship("Favor", backref='pers')# 多对多class ServerToGroup(Base):__tablename__ = 'servertogroup'nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) group = relationship("Group", backref='s2g') server = relationship("Server", backref='s2g')class Group(Base):__tablename__ = 'group'id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22)# group = relationship('Group',secondary=ServerToGroup,backref='host_list')class Server(Base):__tablename__ = 'server'id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False)def init_db(): Base.metadata.create_all(engine)def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
b.1 Add
#单条增加obj = Users(name="alex0", extra='sb') session.add(obj)#多条增加session.add_all([ Users(name="alex1", extra='sb'), Users(name="alex2", extra='sb'), ])#提交session.commit()
b.2 Delete
#先查询到要删除的记录,再deletesession.query(Users).filter(Users.id > 2).delete() session.commit()
b.3 Change
#先查询,再更新session.query(Users).filter(Users.id > 2).update({"name" : "099"}) # 直接更改session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) # 字符串拼接session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") # 数字相加session.commit()
b.4 Check
ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
b.5 Others
# 条件ret = session.query(Users).filter_by(name='alex').all() # 条件内为关键字表达式ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # 条件内为SQL表达式ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() # betweenret = session.query(Users).filter(Users.id.in_([1,3,4])).all() # inret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # not inret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 子查询条件from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() # andret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # orret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "")).all()# 通配符ret = session.query(Users).filter(Users.name.like('e%')).all() # e开头ret = session.query(Users).filter(~Users.name.like('e%')).all() # 非e开头# 限制ret = session.query(Users)[1:2] # 相当于limit# 排序ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()# 分组from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()# 连表ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() # 笛卡儿积连表ret = session.query(Person).join(Favor).all() # 默认内连 inner joinret = session.query(Person).join(Favor, isouter=True).all() # 左连# 组合q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
Reference materials:
1. Python development [Part 19]: Python operation MySQL
The above is the detailed content of MySQL— pymysql and SQLAlchemy. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



You can open phpMyAdmin through the following steps: 1. Log in to the website control panel; 2. Find and click the phpMyAdmin icon; 3. Enter MySQL credentials; 4. Click "Login".

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

Redis uses a single threaded architecture to provide high performance, simplicity, and consistency. It utilizes I/O multiplexing, event loops, non-blocking I/O, and shared memory to improve concurrency, but with limitations of concurrency limitations, single point of failure, and unsuitable for write-intensive workloads.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

Apache connects to a database requires the following steps: Install the database driver. Configure the web.xml file to create a connection pool. Create a JDBC data source and specify the connection settings. Use the JDBC API to access the database from Java code, including getting connections, creating statements, binding parameters, executing queries or updates, and processing results.

Effective monitoring of Redis databases is critical to maintaining optimal performance, identifying potential bottlenecks, and ensuring overall system reliability. Redis Exporter Service is a powerful utility designed to monitor Redis databases using Prometheus. This tutorial will guide you through the complete setup and configuration of Redis Exporter Service, ensuring you seamlessly build monitoring solutions. By studying this tutorial, you will achieve fully operational monitoring settings

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database
