SK-Learn API Family Portrait
I have been using SK-Learn more recently and will use it frequently in the future. I have sorted out all the contents of Sk-Learn and organized my thoughts. , and available for future reference.
(HD pictures can be opened in a separate window with the right mouse button, or saved locally)
Basic public
base
sklearn.cluster
sklearn.datasets
Loaders
Samples generator
sklearn.exceptions
sklearn.pipeline
sklearn.utils
Methods
sklearn.cluster
classes
Functions
sklearn.cluster.bicluster
sklearn.model_selection
Splitter Classes
Splitter Functions
Hyper-parameter optimizers
Model validation
sklearn.dummy
sklearn.ensemble(Ensemble Methods)
sklearn.feature_extraction
sklearn.feature_selection
sklearn.gaussian_process
sklearn.metrics
Model Selection Interface
Classification metrics
Regression metrics
Multilabel ranking metrics
Clustering metrics
Biclustering metrics
Pairwise metrics
sklearn.multioutput(Multioutput regression and classification)
sklearn.calibration (Probability Calibration)
sklearn.cross_decomposition (Cross decomposition)
sklearn.preprocessing (Preprocessing and Normalization)
Mathematical algorithm
sklearn.covariance
sklearn.decomposition
sklearn.isotonic
sklearn.kernel_approximation
sklearn.kernel_ridge
sklearn.discriminant_analysis
sklearn.linear_model (Generalized Linear Models)
sklearn.manifold
sklearn.mixture( Gaussian Mixture Models )
sklearn.multiclass
sklearn.naive_bayes
sklearn.neighbors
sklearn.semi_supervised
sklearn.svm
sklearn.tree
NN algorithm
sklearn.neural_network
The above is the detailed content of SK-Learn API Family Portrait Introduction. For more information, please follow other related articles on the PHP Chinese website!