


Introduction to decorators, generators and iterators in python
装饰器()
1、装饰器:本质是函数;
装饰器(装饰其他函数),就是为其他函数添加附加功能;
原则:1.不能修改被装饰函数的源代码;
2.不能修改被装饰的函数的调用方式;
装饰器对被装饰的函数完全透明的,没有修改被装饰函数的代码和调用方式。
实现装饰器知识储备:
1.函数即“变量”;
2.高阶函数;
3.嵌套函数
高阶函数+嵌套函数=》装饰器
匿名函数(lambda表达式)
>>> calc = lambda x:x*3
>>> calc(2)
6
高阶函数:
a.把一个函数名当做实参传递给另外一个函数;
>>> def bar(): print("in the bar.....") >>> def foo(func): print(func)>>> foo(bar) <function bar at 0x7f8b3653cbf8>
b.返回值中包含函数名;
>>> import time >>> def foo(): time.sleep(3) print("in the foo.....")>>> def main(func): print(func) return func>>> t = main(foo)<function foo at 0x7fb7dc9e3378>>>> t()in the foo.....
在不修改源代码的情况下,统计程序运行的时间:
<span style="font-size: 16px">import time</span><br/><br/><span style="font-size: 16px">def timmer(func):</span><br/><span style="font-size: 16px"> def warpper(*args,**kwargs): #warpper(*args,**kwargs)万能参数,可以指定参数,也可以不指定参数</span><br/><span style="font-size: 16px"> start_time = time.time() #计算时间</span><br/><span style="font-size: 16px"> func()</span><br/><span style="font-size: 16px"> stop_time = time.time()</span><br/><span style="font-size: 16px"> print("the func run time is %s" %(stop_time-start_time)) #计算函数的运行时间</span><br/><span style="font-size: 16px"> return warpper</span><br/><br/><span style="font-size: 16px">@timmer #等价于test1 = timmer(test1),因此函数的执行调用是在装饰器里面执行调用的</span><br/><span style="font-size: 16px">def test1():</span><br/><span style="font-size: 16px"> time.sleep(3)</span><br/><span style="font-size: 16px"> print("in the test1")</span><br/><br/><span style="font-size: 16px">test1()<br/>运行结果如下:<br/></span>
in the test1
the func run time is 3.001983404159546
装饰器带参数的情况:
<span style="font-size: 16px; font-family: 宋体">import time</span><br/><br/><span style="font-size: 16px; font-family: 宋体">def timmer(func):</span><br/><span style="font-size: 16px; font-family: 宋体"> def warpper(*args,**kwargs):</span><br/><span style="font-size: 16px; font-family: 宋体"> start_time = time.time() #计算时间</span><br/><span style="font-size: 16px; font-family: 宋体"> func(*args,**kwargs) #执行函数,装饰器参数情况</span><br/><span style="font-size: 16px; font-family: 宋体"> stop_time = time.time()</span><br/><span style="font-size: 16px; font-family: 宋体"> print("the func run time is %s" %(stop_time-start_time)) #计算函数的运行时间</span><br/><span style="font-size: 16px; font-family: 宋体"> return warpper #返回内层函数名</span><br/><br/><span style="font-size: 16px; font-family: 宋体">@timmer</span><br/><span style="font-size: 16px; font-family: 宋体">def test1():</span><br/><span style="font-size: 16px; font-family: 宋体"> time.sleep(3)</span><br/><span style="font-size: 16px; font-family: 宋体"> print("in the test1")</span><br/><br/><span style="font-size: 16px; font-family: 宋体">@timmer #test2 = timmer(test2)</span><br/><span style="font-size: 16px; font-family: 宋体">def test2(name):</span><br/><span style="font-size: 16px; font-family: 宋体"> print("in the test2 %s" %name)</span><br/><br/><span style="font-size: 16px; font-family: 宋体">test1()</span><br/><span style="font-size: 16px; font-family: 宋体">test2("alex")<br/>运行结果如下:<br/></span>
in the test1
the func run time is 3.0032410621643066
in the test2 alex
the func run time is 2.3603439331054688e-05
装饰器返回值情况:
import time user,passwd = "alex","abc123"def auth(func): def wrapper(*args,**kwargs): username = input("Username:").strip() password = input("Password:").strip()if user == username and passwd == password: print("\033[32;1mUser has passed authentication.\033[0m")return func(*args,**kwargs) #实际上执行调用的函数 # res = func(*args,**kwargs) # return res #函数返回值的情况,因为装饰器调用的时候是在装饰器调用的函数,因此返回值也在这个函数中else: exit("\033[31;1mInvalid username or password.\033[0m")return wrapper def index(): print("welcome to index page...") @auth def home(): #用户自己页面 print("welcome to home page...")return "form home..."@auth def bbs(): print("welcome to bbs page") index() print(home()) bbs()
装饰器带参数的情况:
实现:1、本地验证;2、远程验证
import time user,passwd = "alex","abc123"def auth(auth_type):'''函数的多层嵌套,先执行外层函数'''print("auth_type",auth_type) def out_wrapper(func): def wrapper(*args,**kwargs): print("wrapper func args:",*args,**kwargs)if auth_type == "local": username = input("Username:").strip() password = input("Password:").strip()if user == username and passwd == password: print("\033[32;1mUser has passed authentication.\033[0m") func(*args,**kwargs) #实际上执行调用的函数 # res = func(*args,**kwargs) # return res #函数返回值的情况,因为装饰器调用的时候是在装饰器调用的函数,因此返回值也在这个函数中else: exit("\033[31;1mInvalid username or password.\033[0m") elif auth_type == "ldap": print("搞毛线lbap,傻逼....")return wrapperreturn out_wrapper def index(): print("welcome to index page...") @auth(auth_type="local") def home(): #用户自己页面 print("welcome to home page...")return "form home..."@auth(auth_type="ldap") def bbs(): print("welcome to bbs page") index() home() bbs() #函数没有,因为没有调用函数,函数的调用在装饰器里面,是装饰器调用了函数
迭代器和生成器
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
>>> l1 = (i for i in range(10))
>>> l1
>>> l1.__next__()
0
>>> l1.__next__()
1
生成器:只有在调用时才会生成相应的数据;
只有通过__next__()方法进行执行,这种能够记录程序运行的状态,yield用来生成迭代器函数。(只能往后调用,不能向前或者往后推移,只记住当前状态,因此银行的系统用来记录的时候可以使用yield函数)。
%= %= consumer(= consumer( i range(,) 运行如下: A准备吃包子了...... B准备吃包子了...... 包子1被A吃了...... 包子1被B吃了...... 包子2被A吃了...... 包子2被B吃了...... 包子3被A吃了...... 包子3被B吃了...... 包子4被A吃了...... 包子4被B吃了...... 包子5被A吃了...... 包子5被B吃了...... 包子6被A吃了...... 包子6被B吃了...... 包子7被A吃了...... 包子7被B吃了...... 包子8被A吃了...... 包子8被B吃了...... 包子9被A吃了...... 包子9被B吃了.....
迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象
>>> from collections import Iterable >>> isinstance([], Iterable) True >>> isinstance({}, Iterable) True >>> isinstance('abc', Iterable) True >>> isinstance((x for x in range(10)), Iterable) True >>> isinstance(100, Iterable) False
The above is the detailed content of Introduction to decorators, generators and iterators in python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
