Table of Contents
1. Purpose" >1. Purpose
2. json serialization" >2. json serialization
1. Serialization of dumps and deserialization of loads
2.dump serialization and load deserialization
3.json serializes a function
3. Pickle serialization" >3. Pickle serialization
1.dumps && loads
2. dump && load
Home Backend Development Python Tutorial In-memory data serialization example

In-memory data serialization example

Jul 23, 2017 am 10:07 AM
javascript json pickle

1. Purpose

We need to serialize the data in memory, that is, when writing to a file, the type written can only be a string or binary type. But if we want to serialize more complex data types, such as lists, dictionaries or functions, we have to use json or pickle.

2. json serialization

1. Serialization of dumps and deserialization of loads

dumps converts the data type into a string

import json

info = {
    'name': 'The Count of Monte Cristo',
    'type': 'Movie'
}

data = json.dumps(info)
print(data)
print(type(data))

# 输出
{"name": "The Count of Monte Cristo", "type": "Movie"}
<class &#39;str&#39;>
Copy after login

loads converts the string into a data type

import json

get_info = json.loads(data)
print(get_info[&#39;name&#39;])
print(get_info)
print(type(get_info))

#输出
The Count of Monte Cristo
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;}
<class &#39;dict&#39;> 
Copy after login

2.dump serialization and load deserialization

dump converts the data Convert the type to a string and store it in the file

import json

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;
}

with open("test.txt", "w", encoding="utf-8") as f:
    json.dump(info, f)  # 第一个参数是内存中的数据对象,第二个参数是文件句柄

#写入文件中的内容
{"name": "The Count of Monte Cristo", "type": "Movie"}
Copy after login

loadConvert the file opening from a string to a data type

import json


with open("test.txt", "r", encoding="utf-8") as f:
    data_from_file = json.load(f)

print(data_from_file[&#39;name&#39;])
print(data_from_file)
print(type(data_from_file))

#输出
The Count of Monte Cristo
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;}
<class &#39;dict&#39;>
Copy after login

 

3.json serializes a function

import json

def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

data = json.dumps(info)

#输出
 File "G:/python/untitled/study6/json&pickle模块.py", line 22, in <module>
    data = json.dumps(info)
  File "G:\python\install\lib\json\__init__.py", line 230, in dumps
    return _default_encoder.encode(obj)
  File "G:\python\install\lib\json\encoder.py", line 198, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "G:\python\install\lib\json\encoder.py", line 256, in iterencode
    return _iterencode(o, 0)
  File "G:\python\install\lib\json\encoder.py", line 179, in default
    raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <function test at 0x0000021B13C57F28> is not JSON serializable
Copy after login

1. JSON can only handle simple data types, such as dictionaries, lists, strings, etc. It cannot handle complex data types such as functions.

2, json is common to all languages, and all languages ​​support json. If we need python to interact with other languages ​​for data, then use json format

 

3. Pickle serialization

The usage of pickle is the same as above, but the data type after pickle serialization is binary, and pickle can only be used in python use.

1.dumps && loads

import pickle


def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

data = pickle.dumps(info)
print(data)
print(type(data))

#输出
b&#39;\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x19\x00\x00\x00The Count of Monte Cristoq\x02X\x04\x00\x00\x00typeq\x03X\x05\x00\x00\x00Movieq\x04X\x04\x00\x00\x00funcq\x05c__main__\ntest\nq\x06u.&#39;

<class &#39;bytes&#39;>
Copy after login

import pickle

get_data = pickle.loads(data)
get_data[&#39;func&#39;](&#39;cat&#39;)
print(get_data)

#输出
hello,cat
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;, &#39;func&#39;: <function test at 0x00000235350A7F28>}
Copy after login

 

2. dump && load

import pickle


def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

with open(&#39;test.txt&#39;, &#39;wb&#39;) as f:
    pickle.dump(info, f)

# 写入test.txt文件中的内容

�}q (X   typeqX   MovieqX   funcqc__main__
test
qX   nameqX   The Count of Monte Cristoqu.
Copy after login

 

import pickle

with open(&#39;test.txt&#39;, &#39;rb&#39;) as f:
    get_data = pickle.load(f)
print(get_data)

# 输出

{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;func&#39;: <function test at 0x000001BA2AB4D510>, &#39;type&#39;: &#39;Movie&#39;}
Copy after login

 

Summary:

  • JSON values ​​support simple data types, and pickle supports all data types.

  • pickle can only support serialization and deserialization of python itself, and cannot be used for data interaction with other languages, while json can.

  • pickle serializes the entire data object, so when deserializing a function, the logic in the function body changes and follows the original function body.

The above is the detailed content of In-memory data serialization example. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the difference between MySQL5.7 and MySQL8.0? What is the difference between MySQL5.7 and MySQL8.0? Feb 19, 2024 am 11:21 AM

MySQL5.7 and MySQL8.0 are two different MySQL database versions. There are some main differences between them: Performance improvements: MySQL8.0 has some performance improvements compared to MySQL5.7. These include better query optimizers, more efficient query execution plan generation, better indexing algorithms and parallel queries, etc. These improvements can improve query performance and overall system performance. JSON support: MySQL 8.0 introduces native support for JSON data type, including storage, query and indexing of JSON data. This makes processing and manipulating JSON data in MySQL more convenient and efficient. Transaction features: MySQL8.0 introduces some new transaction features, such as atomic

Performance optimization tips for converting PHP arrays to JSON Performance optimization tips for converting PHP arrays to JSON May 04, 2024 pm 06:15 PM

Performance optimization methods for converting PHP arrays to JSON include: using JSON extensions and the json_encode() function; adding the JSON_UNESCAPED_UNICODE option to avoid character escaping; using buffers to improve loop encoding performance; caching JSON encoding results; and considering using a third-party JSON encoding library.

Pandas usage tutorial: Quick start for reading JSON files Pandas usage tutorial: Quick start for reading JSON files Jan 13, 2024 am 10:15 AM

Quick Start: Pandas method of reading JSON files, specific code examples are required Introduction: In the field of data analysis and data science, Pandas is one of the important Python libraries. It provides rich functions and flexible data structures, and can easily process and analyze various data. In practical applications, we often encounter situations where we need to read JSON files. This article will introduce how to use Pandas to read JSON files, and attach specific code examples. 1. Installation of Pandas

How do annotations in the Jackson library control JSON serialization and deserialization? How do annotations in the Jackson library control JSON serialization and deserialization? May 06, 2024 pm 10:09 PM

Annotations in the Jackson library control JSON serialization and deserialization: Serialization: @JsonIgnore: Ignore the property @JsonProperty: Specify the name @JsonGetter: Use the get method @JsonSetter: Use the set method Deserialization: @JsonIgnoreProperties: Ignore the property @ JsonProperty: Specify name @JsonCreator: Use constructor @JsonDeserialize: Custom logic

Simple JavaScript Tutorial: How to Get HTTP Status Code Simple JavaScript Tutorial: How to Get HTTP Status Code Jan 05, 2024 pm 06:08 PM

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

In-depth understanding of PHP: Implementation method of converting JSON Unicode to Chinese In-depth understanding of PHP: Implementation method of converting JSON Unicode to Chinese Mar 05, 2024 pm 02:48 PM

In-depth understanding of PHP: Implementation method of converting JSONUnicode to Chinese During development, we often encounter situations where we need to process JSON data, and Unicode encoding in JSON will cause us some problems in some scenarios, especially when Unicode needs to be converted When encoding is converted to Chinese characters. In PHP, there are some methods that can help us achieve this conversion process. A common method will be introduced below and specific code examples will be provided. First, let us first understand the Un in JSON

How to get HTTP status code in JavaScript the easy way How to get HTTP status code in JavaScript the easy way Jan 05, 2024 pm 01:37 PM

Introduction to the method of obtaining HTTP status code in JavaScript: In front-end development, we often need to deal with the interaction with the back-end interface, and HTTP status code is a very important part of it. Understanding and obtaining HTTP status codes helps us better handle the data returned by the interface. This article will introduce how to use JavaScript to obtain HTTP status codes and provide specific code examples. 1. What is HTTP status code? HTTP status code means that when the browser initiates a request to the server, the service

Quick tips for converting PHP arrays to JSON Quick tips for converting PHP arrays to JSON May 03, 2024 pm 06:33 PM

PHP arrays can be converted to JSON strings through the json_encode() function (for example: $json=json_encode($array);), and conversely, the json_decode() function can be used to convert from JSON to arrays ($array=json_decode($json);) . Other tips include avoiding deep conversions, specifying custom options, and using third-party libraries.

See all articles