Simple example sharing of recursive neural network implementation in Python

黄舟
Release: 2017-08-11 14:00:57
Original
2175 people have browsed it

This article mainly introduces the recursive neural network implemented in Python. It is an article excerpted from github code snippets. It involves operating skills related to Python recursion and mathematical operations. Friends in need can refer to this article

The example describes the recursive neural network implemented in Python. Share it with everyone for your reference, the details are as follows:


# Recurrent Neural Networks
import copy, numpy as np
np.random.seed(0)
# compute sigmoid nonlinearity
def sigmoid(x):
  output = 1/(1+np.exp(-x))
  return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
  return output*(1-output)
# training dataset generation
int2binary = {}
binary_dim = 8
largest_number = pow(2,binary_dim)
binary = np.unpackbits(
  np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
  int2binary[i] = binary[i]
# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
# training logic
for j in range(10000):
  # generate a simple addition problem (a + b = c)
  a_int = np.random.randint(largest_number/2) # int version
  a = int2binary[a_int] # binary encoding
  b_int = np.random.randint(largest_number/2) # int version
  b = int2binary[b_int] # binary encoding
  # true answer
  c_int = a_int + b_int
  c = int2binary[c_int]
  # where we'll store our best guess (binary encoded)
  d = np.zeros_like(c)
  overallError = 0
  layer_2_deltas = list()
  layer_1_values = list()
  layer_1_values.append(np.zeros(hidden_dim))
  # moving along the positions in the binary encoding
  for position in range(binary_dim):
    # generate input and output
    X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
    y = np.array([[c[binary_dim - position - 1]]]).T
    # hidden layer (input ~+ prev_hidden)
    layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
    # output layer (new binary representation)
    layer_2 = sigmoid(np.dot(layer_1,synapse_1))
    # did we miss?... if so, by how much?
    layer_2_error = y - layer_2
    layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
    overallError += np.abs(layer_2_error[0])
    # decode estimate so we can print(it out)
    d[binary_dim - position - 1] = np.round(layer_2[0][0])
    # store hidden layer so we can use it in the next timestep
    layer_1_values.append(copy.deepcopy(layer_1))
  future_layer_1_delta = np.zeros(hidden_dim)
  for position in range(binary_dim):
    X = np.array([[a[position],b[position]]])
    layer_1 = layer_1_values[-position-1]
    prev_layer_1 = layer_1_values[-position-2]
    # error at output layer
    layer_2_delta = layer_2_deltas[-position-1]
    # error at hidden layer
    layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
    # let's update all our weights so we can try again
    synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
    synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
    synapse_0_update += X.T.dot(layer_1_delta)
    future_layer_1_delta = layer_1_delta
  synapse_0 += synapse_0_update * alpha
  synapse_1 += synapse_1_update * alpha
  synapse_h += synapse_h_update * alpha
  synapse_0_update *= 0
  synapse_1_update *= 0
  synapse_h_update *= 0
  # print(out progress)
  if j % 1000 == 0:
    print("Error:" + str(overallError))
    print("Pred:" + str(d))
    print("True:" + str(c))
    out = 0
    for index,x in enumerate(reversed(d)):
      out += x*pow(2,index)
    print(str(a_int) + " + " + str(b_int) + " = " + str(out))
    print("------------")
Copy after login

Run output:


Error:[ 3.45638663]
Pred:[0 0 0 0 0 0 0 1]
True:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
Error:[ 3.63389116]
Pred:[1 1 1 1 1 1 1 1]
True:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
Error:[ 3.91366595]
Pred:[0 1 0 0 1 0 0 0]
True:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
Error:[ 3.72191702]
Pred:[1 1 0 1 1 1 1 1]
True:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
Error:[ 3.5852713]
Pred:[0 0 0 0 1 0 0 0]
True:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
Error:[ 2.53352328]
Pred:[1 0 1 0 0 0 1 0]
True:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
Error:[ 0.57691441]
Pred:[0 1 0 1 0 0 0 1]
True:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
Error:[ 1.42589952]
Pred:[1 0 0 0 0 0 0 1]
True:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
Error:[ 0.47477457]
Pred:[0 0 1 1 1 0 0 0]
True:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
Error:[ 0.21595037]
Pred:[0 0 0 0 1 1 1 0]
True:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------
Copy after login

The above is the detailed content of Simple example sharing of recursive neural network implementation in Python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template