Detailed explanation of the usage of async in javascript
This article mainly introduces the usage of understanding javascript async. The editor thinks it is quite good. Now I will share it with you and give it as a reference. Let’s follow the editor to take a look
Written in front
This article will implement an optimal method for sequentially reading files. The implementation method starts from the oldest The callback method to the current async, I will also share with you my understanding of the thunk library and the co library. The effect achieved: read a.txt and b.txt sequentially, and concatenate the read contents into a string.
Synchronous reading
const readTwoFile = () => { const f1 = fs.readFileSync('./a.txt'), f2 = fs.readFileSync('./b.txt'); return Buffer.concat([f1, f2]).toString(); };
This method is the most conducive to our understanding, the code is also very clear, without too much The nesting is very easy to maintain, but this has the biggest problem, that is, performance. What node advocates is asynchronous I/O to handle intensive I/O, and synchronous reading is wasteful to a large extent. Server CPU, the disadvantages of this method obviously outweigh the advantages, so just pass it. (In fact, the goal of any asynchronous programming solution in node is to achieve synchronous semantics and asynchronous execution.)
Use callbacks to read
const readTwoFile = () => { let str = null; fs.readFile('./a.txt', (err, data) => { if (err) throw new Error(err); str = data; fs.readFile('./b.txt', (err, data) => { if (err) throw new Error(err); str = Buffer.concat([str, data]).toString(); }); }); };
Using the callback method, it is very simple to implement. Just nest it directly. However, in this case, it is easy to cause a situation that is difficult to maintain and difficult to understand. The most extreme The situation is callback hell.
Promise implementation
const readFile = file => new Promise((reslove, reject) => { fs.readFile(file, (err, data) => { if (err) reject(err); reslove(data); }); }); const readTwoFile = () => { let bf = null; readFile('./a.txt') .then( data => { bf = data; return readFile('./b.txt'); }, err => { throw new Error(err) } ) .then( data => { console.log(Buffer.concat([bf, data]).toString()) }, err => { throw new Error(err) } ); };
Promise can convert horizontal growth callbacks into vertical growth, which can solve some problems. But the problem caused by Promise is code redundancy. At first glance, it is all then, which is not very comfortable, but compared with callback function nesting, it has been greatly improved.
yield
Generator is found in many languages. It is essentially a coroutine. Let’s take a look at the differences and connections between coroutines, threads, and processes. :
Process: The basic unit of resource allocation in the operating system
Thread: The basic unit of resource scheduling in the operating system
Coroutine: an execution unit smaller than a thread, with its own CPU context, one coroutine and one stack
There may be multiple threads in a process. There may be multiple coroutines in a thread. The switching of processes and threads is controlled by the operating system, while the switching of coroutines is controlled by the programmer himself. Asynchronous I/O uses callbacks to deal with intensive I/O. You can also use coroutines to deal with it. Switching coroutines does not waste a lot of resources. Write an I/O operation into a coroutine, and proceed like this During I/O, you can give up the CPU to other coroutines.
js also supports coroutines, which is yield. The intuitive feeling that using yield gives us is that the execution stops at this place and other code continues to run. When you want it to continue execution, it will continue to execute.
function *readTwoFile() { const f1 = yield readFile('./a.txt'); const f2 = yield readFile('./b.txt'); return Buffer.concat([f1, f2]).toString(); }
The sequential reading under yield is also a sequential reading method. There are two different implementation methods for readFile,
Use thunkify
const thunkify = (fn, ctx) => (...items) => (done) => { ctx = ctx || null; let called = false; items.push((...args) => { if (called) return void 0; called = true; done.apply(ctx, args); }); try { fn.apply(ctx, items); } catch(err) { done(err); } };
The thunkify function is a kind of currying idea. The last parameter passed in is the callback function. It can be easily done using thunkify. Implement the automated process of yield function:
const run = fn => { const gen = fn(); let res; (function next(err, data) { let g = gen.next(data); if (g.done) return void 0; g.value(next); })(); };
Use Promise
##
const readFile = file => new Promise((reslove, reject) => { fs.readFile(file, (err, data) => { if (err) reject(err); reslove(data); }); }); const run = fn => { const gen = fn(); let str = null; (function next(err, data) { let res = gen.next(data); if (res.done) return void 0; res.value.then( data => { next(null, data); }, err => { throw new Error(err); } ); })(); }; run(readTwoFile);
// readTwoFile的实现与上面类似,readFile既可以利用Promise也可以利用thunkify // co库返回一个Promise对象 co(readTwoFile).then(data => console.log(data));
const baseHandle = handle => res => { let ret; try { ret = gen[handle](res); } catch(e) { reject(e); } next(ret); }; function co(gen) { const ctx = this, args = Array.prototype.slice.call(arguments, 1); return new Promise((reslove, reject) => { if (typeof gen === 'function') gen = gen.apply(ctx, args); if (!gen || typeof gen.next !== 'function') return resolve(gen); const onFulfilled = baseHandle('next'), onRejected = baseHandle('throw'); onFulfilled(); function next(ret) { if (ret.done) reslove(ret.value); // 将yield的返回值转换为Proimse const value = toPromise.call(ctx, ret.value); if (value && isPromise(value)) return value.then(onFulfilled, onRejected); return onRejected(new TypeError('yield type error')); } }); }
// 把thunkify之后的函数转化为Promise的形式 function thunkToPromise(fn) { const ctx = this; return new Promise(function (resolve, reject) { fn.call(ctx, function (err, res) { if (err) return reject(err); if (arguments.length > 2) res = slice.call(arguments, 1); resolve(res); }); }); }
Ultimate Solution
const readFile = file => new Promise((reslove, reject) => { fs.readFile(file, (err, data) => { if (err) reject(err); reslove(data); }); }); const readTwoFile = async function() { const f1 = await readFile('./a.txt'); const f2 = await readFile('./b.txt'); return Buffer.concat([f1, f2]).toString(); }; readTwoFile().then(data => { console.log(data); });
The above is the detailed content of Detailed explanation of the usage of async in javascript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

Face detection and recognition technology is already a relatively mature and widely used technology. Currently, the most widely used Internet application language is JS. Implementing face detection and recognition on the Web front-end has advantages and disadvantages compared to back-end face recognition. Advantages include reducing network interaction and real-time recognition, which greatly shortens user waiting time and improves user experience; disadvantages include: being limited by model size, the accuracy is also limited. How to use js to implement face detection on the web? In order to implement face recognition on the Web, you need to be familiar with related programming languages and technologies, such as JavaScript, HTML, CSS, WebRTC, etc. At the same time, you also need to master relevant computer vision and artificial intelligence technologies. It is worth noting that due to the design of the Web side

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

Essential tools for stock analysis: Learn the steps to draw candle charts in PHP and JS. Specific code examples are required. With the rapid development of the Internet and technology, stock trading has become one of the important ways for many investors. Stock analysis is an important part of investor decision-making, and candle charts are widely used in technical analysis. Learning how to draw candle charts using PHP and JS will provide investors with more intuitive information to help them make better decisions. A candlestick chart is a technical chart that displays stock prices in the form of candlesticks. It shows the stock price

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest
