Analysis of the basic concepts of thread safety in Java
This article mainly introduces the analysis of the basic concepts of Java thread safety. I hope it can give you a reference and friends who need it can learn more.
Initial understanding of Java thread safety. Generally speaking, JAVA thread safety refers to a characteristic of Java objects in a multi-threaded running environment, which means that each call can get the correct logical result under normal (different from special call situations). In essence, synchronization control logic is added to the method behavior of the object, and the caller can use the object safely and securely without any additional synchronization control.
1. Definition of thread safety
When multiple threads access an object, if these threads do not need to be considered Scheduling and alternate execution in the runtime environment do not require additional synchronization or any other coordination operations on the caller. The behavior of calling this object can obtain the correct result, then this object is thread-safe. This definition is very strict. It requires that all thread-safe codes have one characteristic: the code itself encapsulates all necessary correctness guarantee means, so that the caller does not need to care about multi-threading issues, and there is no need to implement Rehe measures to ensure multi-threading. correct call.
2. Thread safety in Java language
In order to have a deeper understanding of thread safety, follow the thread safety "Security strength" is sorted from strong to weak: immutable, absolutely thread-safe, relatively thread-safe, thread-compatible and thread-antagonistic.
2.1 Immutability
After jDK1.5, immutable objects must be thread-safe, regardless of whether Neither the method implementation of the object nor the caller of the method need to implement any thread safety measures. For properties, objects or methods modified by the final keyword, their external visible state will never change. If the shared data is a basic data type, then it can be guaranteed to be immutable by using the final keyword when defining it. For example, the String class object is a typical immutable object. When we call substring(), replace(), and concat(), these methods will not affect its original value and will only return a newly constructed string object.
2.2 Relative thread safety
Relative thread safety is what we usually call thread safety, it requires Ensure that individual operations on this object are thread-safe. Most thread-safe classes in Java belong to this type, such as Vector, HashTable, etc.
2.3 Thread compatibility
#Thread compatibility means that the object itself is not thread-safe, but it can be passed through the call The client correctly uses synchronization methods to ensure that objects can be used safely in concurrent environments.
2.3 Thread conflict
Thread conflict means that no matter whether the calling end adopts synchronization measures, it cannot Code used concurrently in a threaded environment. Since the Java language is inherently multi-threaded, code that excludes multi-threading such as thread opposition rarely appears. Common thread opposition operations include the suspend() and resume() methods of the Thread class, System.setIn(), etc.
3. Thread safety implementation method
##3.1 Mutually exclusive synchronization
Waiting can be interrupted: It means that when the thread holding the lock does not release the lock for a long time, the waiting thread can choose to give up waiting and deal with other things instead. The interrupt feature is helpful in handling synchronized blocks that take very long execution times.
The lock can be bound to multiple conditions: it means that a reentrant lock object can be bound to multiple Condition objects at the same time. In synchronized, the wait() and notify() or notifyAll() methods of the lock object can implement a If you want to associate an implicit condition with more than one condition, you have to add an additional lock. However, you don't need to do this for reentrant locks. You only need to call the newCondition() method multiple times.
3.2 Non-blocking synchronization
The most important problem of mutually exclusive synchronization is caused by thread blocking and waking up Performance issues, it is a pessimistic concurrency strategy, always thinking that as long as correct synchronization measures are not taken, problems will occur. But we have another option: an optimistic concurrency strategy based on conflict detection. In layman's terms, the operation is performed first. If no other threads compete for the shared data, the operation is successful; if there is contention for the shared data, a conflict occurs. , then take other compensation measures. Many implementations of this optimistic concurrency strategy do not need to suspend the thread, so it is called non-blocking synchronization.
Summarize
The above is the detailed content of Analysis of the basic concepts of thread safety in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
