


Analysis of implementation methods of Python extended built-in types
This article mainly introduces the method of extending built-in types in Python, and analyzes the specific implementation techniques of Python embedded built-in type extensions and subclass extensions in the form of examples. Friends in need can refer to this article
The example describes how Python implements extending built-in types. Share it with everyone for your reference, the details are as follows:
Introduction
In addition to implementing new types of object methods, sometimes we can also use Extend Python built-in types to support other types of data structures, such as adding queue insertion and deletion methods to lists. In response to this problem, this article introduces two methods of extending Python's built-in types by combining examples of implementing collection functions: extending types by embedding built-in types and extending types by subclassing.
Extension by embedding built-in types
The following example implements a collection object by using the list object as an embedded type, and adds some operator overloading. This class wraps Python's lists, as well as additional set operations.
class Set: def __init__(self, value=[]): # Constructor self.data = [] # Manages a list self.concat(value) def intersect(self, other): # other is any sequence res = [] # self is the subject for x in self.data: if x in other: # Pick common items res.append(x) return Set(res) # Return a new Set def union(self, other): # other is any sequence res = self.data[:] # Copy of my list for x in other: # Add items in other if not x in res: res.append(x) return Set(res) def concat(self, value): # value: list, Set... for x in value: # Removes duplicates if not x in self.data: self.data.append(x) def __len__(self): return len(self.data) # len(self) def __getitem__(self, key): return self.data[key] # self[i] def __and__(self, other): return self.intersect(other) # self & other def __or__(self, other): return self.union(other) # self | other def __repr__(self): return 'Set:' + repr(self.data) # print() if __name__ == '__main__': x = Set([1, 3, 5, 7]) print(x.union(Set([1, 4, 7]))) # prints Set:[1, 3, 5, 7, 4] print(x | Set([1, 4, 6])) # prints Set:[1, 3, 5, 7, 4, 6]
Extending types by subclassing
Starting from Python 2.2, all built-in types Subclasses such as list, str, dict and tuple can be created directly. This allows you to customize or extend built-in types through user-defined class statements: subclass the type name and customize it. An instance of a subtype of a type can be used anywhere the original built-in type can appear.
class Set(list): def __init__(self, value = []): # Constructor list.__init__([]) # Customizes list self.concat(value) # Copies mutable defaults def intersect(self, other): # other is any sequence res = [] # self is the subject for x in self: if x in other: # Pick common items res.append(x) return Set(res) # Return a new Set def union(self, other): # other is any sequence res = Set(self) # Copy me and my list res.concat(other) return res def concat(self, value): # value: list, Set . . . for x in value: # Removes duplicates if not x in self: self.append(x) def __and__(self, other): return self.intersect(other) def __or__(self, other): return self.union(other) def __repr__(self): return 'Set:' + list.__repr__(self) if __name__ == '__main__': x = Set([1,3,5,7]) y = Set([2,1,4,5,6]) print(x, y, len(x)) print(x.intersect(y), y.union(x)) print(x & y, x | y) x.reverse(); print(x)
The above is the detailed content of Analysis of implementation methods of Python extended built-in types. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.

Yes, VS Code can run Python code. To run Python efficiently in VS Code, complete the following steps: Install the Python interpreter and configure environment variables. Install the Python extension in VS Code. Run Python code in VS Code's terminal via the command line. Use VS Code's debugging capabilities and code formatting to improve development efficiency. Adopt good programming habits and use performance analysis tools to optimize code performance.
