I have introduced WebWorkers-WEB high-performance computing to you before. The knowledge about javascript is very interesting. So today I will tell you about the relationship between asm.js & webassembly and WEB high-performance computing. We have said before that we need to solve it. There are two methods for high-performance computing, one is to use WebWorkers concurrently, and the other is to use a lower-level static language.
In 2012, Mozilla engineer Alon Zakai had a sudden idea when he was studying the LLVM compiler: Can C/C++ be compiled into Javascript and try to achieve the speed of Native code? So he developed the Emscripten compiler, which is used to compile C/C++ code into asm.js, a subset of Javascript. The performance is almost 50% of the native code. You can take a look at this PPT.
Later, Google developed Portable Native Client, which is also a technology that allows browsers to run C/C++ code. Later, I guess everyone felt that it was impossible to do their own thing. Actually, Google, Microsoft, Mozilla, Apple and other major companies worked together to develop a universal binary and text format project for the Web, which is WebAssembly. The introduction on the official website is :
WebAssembly or wasm is a new portable, size- and load-time-efficient format suitable for compilation to the web.
WebAssembly is currently being designed as an open standard by a W3C Community Group that includes representatives from all major browsers.
##Install Emscripten
##Visit https://kripken.github.io/emscripten-site/docs/getting_started/downloads.html
1. Download the SDK corresponding to the platform version
2. Get the latest version of the tool through emsdk
# Fetch the latest registry of available tools. ./emsdk update # Download and install the latest SDK tools. ./emsdk install latest # Make the "latest" SDK "active" for the current user. (writes ~/.emscripten file) ./emsdk activate latest # Activate PATH and other environment variables in the current terminal source ./emsdk_env.sh
3. Add the following to the environment variable PATH
~/emsdk-portable ~/emsdk-portable/clang/fastcomp/build_incoming_64/bin ~/emsdk-portable/emscripten/incoming
4. Others
I encountered an error when executing It says that the LLVM version is wrong. Later, just refer to the documentation to configure the LLVM_ROOT variable. If you don't encounter any problems, you can ignore it.
LLVM_ROOT = os.path.expanduser(os.getenv('LLVM', '/home/ubuntu/a-path/emscripten-fastcomp/build/bin'))
5. Verify whether the installation is complete
Execute emcc -v. If the installation is successful, the following message will appear:
emcc (Emscripten gcc/clang-like replacement + linker emulating GNU ld) 1.37.21 clang version 4.0.0 (https://github.com/kripken/emscripten-fastcomp-clang.git 974b55fd84ca447c4297fc3b00cefb6394571d18) (https://github.com/kripken/emscripten-fastcomp.git 9e4ee9a67c3b67239bd1438e31263e2e86653db5) (emscripten 1.37.21 : 1.37.21) Target: x86_64-apple-darwin15.5.0 Thread model: posix InstalledDir: /Users/magicly/emsdk-portable/clang/fastcomp/build_incoming_64/bin INFO:root:(Emscripten: Running sanity checks)
Create a file hello.c:
#include <stdio.h> int main() { printf("Hello, WebAssembly!\n"); return 0; }
emcc hello.c
node a.out.js
Hello, WebAssembly!
emcc hello.c -o hello.html<code> ➜ webasm-study md5 a.out.js MD5 (a.out.js) = d7397f44f817526a4d0f94bc85e46429 ➜ webasm-study md5 hello.js MD5 (hello.js) = d7397f44f817526a4d0f94bc85e46429
The code generated in front is all asm.js, after all, Emscripten The author Alon Zakai was the first to use it to generate asm.js. It is not surprising that asm.js is output by default. Of course, wasm can be generated through option, and three files will be generated: hello-wasm.html, hello-wasm.js, hello-wasm.wasm.
emcc hello.c -s WASM=1 -o hello-wasm.html
file://
//, so we need to start a server.npm install -g serve serve
Write the following code in the file add.c:
#include <stdio.h> int add(int a, int b) { return a + b; } int main() { printf("a + b: %d", add(1, 2)); return 0; }
emcc -s EXPORTED_FUNCTIONS="['_add']" add.c -o add.js
// file node-add.js const add_module = require('./add.js'); console.log(add_module.ccall('add', 'number', ['number', 'number'], [2, 3]));
emcc -s EXPORTED_FUNCTIONS="['_add']" add.c -o add.html
<button onclick="nativeAdd()">click</button> <script type='text/javascript'> function nativeAdd() { const result = Module.ccall('add', 'number', ['number', 'number'], [2, 3]); alert(result); } </script>
const cAdd = add_module.cwrap('add', 'number', ['number', 'number']); console.log(cAdd(2, 3)); console.log(cAdd(2, 4));
When defining the function
, add EMSCRIPTEN_KEEPALIVE#include <stdio.h> #include <emscripten.h>
int EMSCRIPTEN_KEEPALIVE add(int a, int b) { return a + b; } int main() { printf("a + b: %d", add(1, 2)); return 0; }
emcc add2.c -o add2.html
<button onclick="nativeAdd()">click</button> <script type='text/javascript'> function nativeAdd() { const result = Module.ccall('add', 'number', ['number', 'number'], [2, 3]); alert(result); } </script>
Assertion failed: the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)
可以通过在main()中添加emscripten_exit_with_live_runtime()解决:
#include <stdio.h> #include <emscripten.h> int EMSCRIPTEN_KEEPALIVE add(int a, int b) { return a + b; } int main() { printf("a + b: %d", add(1, 2)); emscripten_exit_with_live_runtime(); return 0; }
或者也可以直接在命令行中添加-s NO_EXIT_RUNTIME=1来解决,
emcc add2.c -o add2.js -s NO_EXIT_RUNTIME=1
不过会报一个警告:
exit(0) implicitly called by end of main(), but noExitRuntime, so not exiting the runtime (you can use emscripten_force_exit, if you want to force a true shutdown)exit(0) implicitly called by end of main(), but noExitRuntime, so not exiting the runtime (you can use emscripten_force_exit, if you want to force a true shutdown)
所以建议采用第一种方法。
上述生成的代码都是asm.js,只需要在编译参数中添加-s WASM=1中就可以生成wasm,然后使用方法都一样。
用asm.js和WebAssembly执行耗时计算
前面准备工作都做完了, 现在我们来试一下用C代码来优化前一篇中提过的问题。代码很简单:
// file sum.c #include <stdio.h> // #include <emscripten.h> long sum(long start, long end) { long total = 0; for (long i = start; i <= end; i += 3) { total += i; } for (long i = start; i <= end; i += 3) { total -= i; } return total; } int main() { printf("sum(0, 1000000000): %ld", sum(0, 1000000000)); // emscripten_exit_with_live_runtime(); return 0; }
注意用gcc编译的时候需要把跟emscriten相关的两行代码注释掉,否则编译不过。 我们先直接用gcc编译成native code看看代码运行多块呢?
➜ webasm-study gcc sum.c ➜ webasm-study time ./a.out sum(0, 1000000000): 0./a.out 5.70s user 0.02s system 99% cpu 5.746 total ➜ webasm-study gcc -O1 sum.c ➜ webasm-study time ./a.out sum(0, 1000000000): 0./a.out 0.00s user 0.00s system 64% cpu 0.003 total ➜ webasm-study gcc -O2 sum.c ➜ webasm-study time ./a.out sum(0, 1000000000): 0./a.out 0.00s user 0.00s system 64% cpu 0.003 total
可以看到有没有优化差别还是很大的,优化过的代码执行时间是3ms!。really?仔细想想,我for循环了10亿次啊,每次for执行大概是两次加法,两次赋值,一次比较,而我总共做了两次for循环,也就是说至少是100亿次操作,而我的mac pro是2.5 GHz Intel Core i7,所以1s应该也就执行25亿次CPU指令操作吧,怎么可能逆天到这种程度,肯定是哪里错了。想起之前看到的一篇rust测试性能的文章,说rust直接在编译的时候算出了答案, 然后把结果直接写到了编译出来的代码里, 不知道gcc是不是也做了类似的事情。在知乎上GCC中-O1 -O2 -O3 优化的原理是什么?这篇文章里, 还真有loop-invariant code motion(LICM)针对for的优化,所以我把代码增加了一些if判断,希望能“糊弄”得了gcc的优化。
#include <stdio.h> // #include <emscripten.h> // long EMSCRIPTEN_KEEPALIVE sum(long start, long end) { long sum(long start, long end) { long total = 0; for (long i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total += i; } else if (i % 5 == 0 || i % 7 == 1) { total += i / 2; } } for (long i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total -= i; } else if (i % 5 == 0 || i % 7 == 1) { total -= i / 2; } } return total; } int main() { printf("sum(0, 1000000000): %ld", sum(0, 100000000)); // emscripten_exit_with_live_runtime(); return 0; }
执行结果大概要正常一些了。
➜ webasm-study gcc -O2 sum.c ➜ webasm-study time ./a.out sum(0, 1000000000): 0./a.out 0.32s user 0.00s system 99% cpu 0.324 total
ok,我们来编译成asm.js了。
#include <stdio.h> #include <emscripten.h> long EMSCRIPTEN_KEEPALIVE sum(long start, long end) { // long sum(long start, long end) { long total = 0; for (long i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total += i; } else if (i % 5 == 0 || i % 7 == 1) { total += i / 2; } } for (long i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total -= i; } else if (i % 5 == 0 || i % 7 == 1) { total -= i / 2; } } return total; } int main() { printf("sum(0, 1000000000): %ld", sum(0, 100000000)); emscripten_exit_with_live_runtime(); return 0; } 执行 emcc sum.c -o sum.html
然后在sum.html中添加代码
<button onclick="nativeSum()">NativeSum</button> <button onclick="jsSumCalc()">JSSum</button> <script type='text/javascript'> function nativeSum() { t1 = Date.now(); const result = Module.ccall('sum', 'number', ['number', 'number'], [0, 100000000]); t2 = Date.now(); console.log(`result: ${result}, cost time: ${t2 - t1}`); } </script> <script type='text/javascript'> function jsSum(start, end) { let total = 0; for (let i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total += i; } else if (i % 5 == 0 || i % 7 == 1) { total += i / 2; } } for (let i = start; i <= end; i += 1) { if (i % 2 == 0 || i % 3 == 1) { total -= i; } else if (i % 5 == 0 || i % 7 == 1) { total -= i / 2; } } return total; } function jsSumCalc() { const N = 100000000;// 总次数1亿 t1 = Date.now(); result = jsSum(0, N); t2 = Date.now(); console.log(`result: ${result}, cost time: ${t2 - t1}`); } </script> 另外,我们修改成编译成WebAssembly看看效果呢? emcc sum.c -o sum.js -s WASM=1
感觉Firefox有点不合理啊, 默认的JS太强了吧。然后觉得webassembly也没有特别强啊,突然发现emcc编译的时候没有指定优化选项-O2。再来一次:
emcc -O2 sum.c -o sum.js # for asm.js emcc -O2 sum.c -o sum.js -s WASM=1 # for webassembly
居然没什么变化, 大失所望。号称asm.js可以达到native的50%速度么,这个倒是好像达到了。但是今年Compiling for the Web with WebAssembly (Google I/O ‘17)里说WebAssembly是1.2x slower than native code,感觉不对呢。asm.js还有一个好处是,它就是js,所以即使浏览器不支持,也能当成不同的js执行,只是没有加速效果。当然WebAssembly受到各大厂商一致推崇,作为一个新的标准,肯定前景会更好,期待会有更好的表现。
这就是asm.js & webassembly与web高性能计算的关系了,之后还有想法写一份结合Rust做WebAssembly的文章,有兴趣的朋友可以持续关注。
The above is the detailed content of asm.js & webassembly-WEB high performance computing. For more information, please follow other related articles on the PHP Chinese website!