How to implement a perceptron in python
We know that the perceptron is the simplest neural network, with only one layer. Perceptrons are machines that simulate the behavior of biological neurons. So the teaching I bring to you this time is how to use python to implement the perceptron. The model is as follows.
Given an n-dimensional input, w and b are parameters, w is the weight, each input corresponds to a weight, and b is the bias term, which needs to be trained from the data.
Activation function There are many choices for the activation function of the perceptron. For example, we can choose the following step function f as the activation function:
In fact, the perceptron can fit any linear function, Any linear classification or linear regression problem can be solved using perceptrons. But the perceptron cannot implement the XOR operation, and of course all linear classifiers cannot implement the XOR operation.
The so-called XOR operation:
For the above picture, we cannot find a straight line that can separate categories 0 and 1. For the and operation, the perceptron can be implemented, and we can find a straight line to divide it into two parts. .
For the and operation:
Training of the perceptron
First randomly initialize the weight w and bias b to a very small number, and then continuously update w during training and the value of b.
1. Initialize the weight to 0 or a small random number
2. For each training sample x(i), perform the following steps:
Calculate the output value y^.
Update weights
The perceptron is used to implement the and operation below. The specific code is as follows:
# -*- coding: utf-8 -*- # python 3.4 import numpy as np from random import choice from sklearn import cross_validation from sklearn.linear_model import LogisticRegression '''''
1. Change the weight Initialized to 0 or a small random number
2. For each training sample x(i), perform the following steps:
Calculate the output value y^.
Update Weight
''' def load_data(): input_data=[[1,1], [0,0], [1,0], [0,1]] labels=[1,0,0,0] return input_data,labels def train_pre(input_data,y,iteration,rate): #=========================== '''''
Parameters:
input_data: input data
y: label list
iteration: number of training rounds
rate: learning Rate
''' #============================ unit_step = lambda x: 0 if x < 0 else 1 w=np.random.rand(len(input_data[0]))#随机生成[0,1)之间,作为初始化w bias=0.0#偏置 for i in range(iteration): samples= zip(input_data,y) for (input_i,label) in samples:#对每一组样本 #计算f(w*xi+b),此时x有两个 result=input_i*w+bias result=float(sum(result)) y_pred=float(unit_step(result))#计算输出值 y^ w=w+rate*(label-y_pred)*np.array(input_i)#更新权重 bias=rate*(label-y_pred)#更新bias return w,bias def predict(input_i,w,b): unit_step = lambda x: 0 if x < 0 else 1#定义激活函数 result=result=result=input_i*w+b result=sum(result) y_pred=float(unit_step(result)) print(y_pred) if __name__=='__main__': input_data,y=load_data() w,b=train_pre(input_data,y,20,0.01) predict([1,1],w,b)
I believe you have mastered the method after reading these cases. For more exciting information, please pay attention to other related articles on the php Chinese website!
Related reading:
The most popular in php Simple string matching algorithm, php matching algorithm_PHP tutorial
The simplest string matching algorithm tutorial in php
The above is the detailed content of How to implement a perceptron in python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

Convert XML to PDF with high quality on your mobile phone requires: parsing XML in the cloud and generating PDFs using a serverless computing platform. Choose efficient XML parser and PDF generation library. Handle errors correctly. Make full use of cloud computing power to avoid heavy tasks on your phone. Adjust complexity according to requirements, including processing complex XML structures, generating multi-page PDFs, and adding images. Print log information to help debug. Optimize performance, select efficient parsers and PDF libraries, and may use asynchronous programming or preprocessing XML data. Ensure good code quality and maintainability.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.
