Home Backend Development Python Tutorial Detailed explanation of python implementation of kMeans algorithm

Detailed explanation of python implementation of kMeans algorithm

Dec 22, 2017 am 09:03 AM
python Detailed explanation

Clustering is a kind of unsupervised learning. Putting similar objects into the same cluster is a bit like fully automatic classification. The more similar the objects in the cluster are, the greater the difference between objects between clusters, and the better the clustering effect will be. good. This article mainly introduces the implementation of kMeans algorithm in python in detail, which has certain reference value. Interested friends can refer to it and hope it can help everyone.

1. k-means clustering algorithm

k-means clustering divides the data into k clusters, and each cluster passes its centroid, that is, the center of the cluster Describe the center of all points. First, k initial points are randomly determined as centroids, and then the data set is assigned to the closest cluster. The centroid of each cluster is then updated to be the average of all data sets. Then divide the data set a second time until the clustering results no longer change.

The pseudo code is

Randomly create k cluster centroids
When the cluster assignment of any point changes:
For each point in the data set Data points:
For each centroid:
Calculate the distance from the data set to the centroid
Allocate the data set to the cluster corresponding to the nearest centroid
For each cluster, calculate the mean of all points in the cluster And use the mean as the center of mass

python implementation


##

import numpy as np
import matplotlib.pyplot as plt

def loadDataSet(fileName): 
 dataMat = [] 
 with open(fileName) as f:
  for line in f.readlines():
   line = line.strip().split('\t')
   dataMat.append(line)
 dataMat = np.array(dataMat).astype(np.float32)
 return dataMat


def distEclud(vecA,vecB):
 return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
 m = np.shape(dataSet)[1]
 center = np.mat(np.ones((k,m)))
 for i in range(m):
  centmin = min(dataSet[:,i])
  centmax = max(dataSet[:,i])
  center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
 return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroids = createCent(dataSet,k)
 clusterChanged = True
 while clusterChanged:
  clusterChanged = False
  for i in range(m):
   minDist = np.inf
   minIndex = -1
   for j in range(k):
    distJI = distMeans(dataSet[i,:],centroids[j,:])
    if distJI < minDist:
     minDist = distJI
     minIndex = j
   if clusterAssment[i,0] != minIndex:
    clusterChanged = True
   clusterAssment[i,:] = minIndex,minDist**2
  for cent in range(k):
   ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
   centroids[cent,:] = np.mean(ptsInClust,axis = 0)
 return centroids,clusterAssment



data = loadDataSet(&#39;testSet.txt&#39;)
muCentroids, clusterAssing = kMeans(data,4)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A)
plt.show()

print(clusterAssing)
Copy after login

2. Bisection k-means algorithm

The K-means algorithm may converge to a local minimum rather than a global minimum. One metric used to measure clustering effectiveness is the sum of squared errors (SSE). Because the square is taken, more emphasis is placed on the point at the center of the principle. In order to overcome the problem that the k-means algorithm may converge to a local minimum, someone proposed the bisection k-means algorithm.

First treat all points as a cluster, then divide the cluster into two, and then select the cluster among all clusters that can minimize the SSE value until the specified number of clusters is met.

Pseudocode

Consider all points as a clusterCalculate SSE
while When the number of clusters is less than k:
for each cluster :
                                                                                                                                                                                                        being being being done to be –
”                                                                             having Perform division operation



Python implementation

import numpy as np
import matplotlib.pyplot as plt

def loadDataSet(fileName): 
 dataMat = [] 
 with open(fileName) as f:
  for line in f.readlines():
   line = line.strip().split(&#39;\t&#39;)
   dataMat.append(line)
 dataMat = np.array(dataMat).astype(np.float32)
 return dataMat


def distEclud(vecA,vecB):
 return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
 m = np.shape(dataSet)[1]
 center = np.mat(np.ones((k,m)))
 for i in range(m):
  centmin = min(dataSet[:,i])
  centmax = max(dataSet[:,i])
  center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
 return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroids = createCent(dataSet,k)
 clusterChanged = True
 while clusterChanged:
  clusterChanged = False
  for i in range(m):
   minDist = np.inf
   minIndex = -1
   for j in range(k):
    distJI = distMeans(dataSet[i,:],centroids[j,:])
    if distJI < minDist:
     minDist = distJI
     minIndex = j
   if clusterAssment[i,0] != minIndex:
    clusterChanged = True
   clusterAssment[i,:] = minIndex,minDist**2
  for cent in range(k):
   ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
   centroids[cent,:] = np.mean(ptsInClust,axis = 0)
 return centroids,clusterAssment

def biKmeans(dataSet,k,distMeans = distEclud):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroid0 = np.mean(dataSet,axis=0).tolist()
 centList = [centroid0]
 for j in range(m):
  clusterAssment[j,1] = distMeans(dataSet[j,:],np.mat(centroid0))**2
 while (len(centList)<k):
  lowestSSE = np.inf
  for i in range(len(centList)):
   ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:]
   centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans)
   sseSplit = np.sum(splitClustAss[:,1])
   sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1])
   if (sseSplit + sseNotSplit) < lowestSSE:
    bestCentToSplit = i
    bestNewCents = centroidMat.copy()
    bestClustAss = splitClustAss.copy()
    lowestSSE = sseSplit + sseNotSplit
  print(&#39;the best cent to split is &#39;,bestCentToSplit)
#  print(&#39;the len of the bestClust&#39;)
  bestClustAss[np.nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
  bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit

  clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy()
  centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
  centList.append(bestNewCents[1,:].tolist()[0])
 return np.mat(centList),clusterAssment

data = loadDataSet(&#39;testSet2.txt&#39;)
muCentroids, clusterAssing = biKmeans(data,3)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired)
ax.scatter(muCentroids[:,0],muCentroids[:,1])
plt.show()

print(clusterAssing)
print(muCentroids)
Copy after login

Code and data set download: K-means

Related recommendations:


Let Mahout KMeans cluster analysis run on Hadoop

##cvKMeans2 mean cluster analysis + code analysis + Grayscale color image clustering

Detailed example explanation of simple web page image grabbing using Python

The above is the detailed content of Detailed explanation of python implementation of kMeans algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Is the conversion speed fast when converting XML to PDF on mobile phone? Is the conversion speed fast when converting XML to PDF on mobile phone? Apr 02, 2025 pm 10:09 PM

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

How to convert XML files to PDF on your phone? How to convert XML files to PDF on your phone? Apr 02, 2025 pm 10:12 PM

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

What is the function of C language sum? What is the function of C language sum? Apr 03, 2025 pm 02:21 PM

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

Is there a mobile app that can convert XML into PDF? Is there a mobile app that can convert XML into PDF? Apr 02, 2025 pm 09:45 PM

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

Recommended XML formatting tool Recommended XML formatting tool Apr 02, 2025 pm 09:03 PM

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

How to convert XML to PDF on your phone? How to convert XML to PDF on your phone? Apr 02, 2025 pm 10:18 PM

It is not easy to convert XML to PDF directly on your phone, but it can be achieved with the help of cloud services. It is recommended to use a lightweight mobile app to upload XML files and receive generated PDFs, and convert them with cloud APIs. Cloud APIs use serverless computing services, and choosing the right platform is crucial. Complexity, error handling, security, and optimization strategies need to be considered when handling XML parsing and PDF generation. The entire process requires the front-end app and the back-end API to work together, and it requires some understanding of a variety of technologies.

How to open xml format How to open xml format Apr 02, 2025 pm 09:00 PM

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

How to convert xml into pictures How to convert xml into pictures Apr 03, 2025 am 07:39 AM

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

See all articles