This article mainly introduces to you the relevant information about deduplication and optimization of numerical arrays using js to construct binary trees. The article introduces it in great detail through sample codes. It has certain reference learning value for everyone's study or work. Friends who need it Let’s learn together with the editor below.
Common two-layer loop to implement array deduplication
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] let newArr = [] for (let i = 0; i < arr.length; i++) { let unique = true for (let j = 0; j < newArr.length; j++) { if (newArr[j] === arr[i]) { unique = false break } } if (unique) { newArr.push(arr[i]) } } console.log(newArr)
Construct a binary tree to achieve deduplication (only applicable to numeric type arrays)
Construct the previously traversed elements into a binary tree. Each node in the tree satisfies: The value of the left child node < the value of the current node < the value of the right child node
This optimizes the process of judging whether the element has appeared before
If the element is older than the current node if the element is smaller than the current node, you only need to determine whether the element has appeared in the left subtree of the node.
let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization idea one, record the maximum and minimum values
Record the inserted elements If the maximum and minimum values are larger than the maximum element or the minimum element is smaller, insert it directly
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] this.max = null this.min = null } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) this.max = value this.min = value return this.arr } if (value > this.max) { this.arr.push(value) this.max = value this.findMax().right = node return this.arr } if (value < this.min) { this.arr.push(value) this.min = value this.findMin().left = node return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } findMax() { let current = this.root while (current.right) { current = current.right } return current } findMin() { let current = this.root while (current.left) { current = current.left } return current } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization idea two, build a red-black tree
Build a red-black tree and balance the height of the tree
For the part about the red-black tree, please see the insertion of the red-black tree
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] console.log(Array.from(new Set(arr))) class Node { constructor(value) { this.value = value this.left = null this.right = null this.parent = null this.color = 'red' } } class RedBlackTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { node.color = 'black' this.root = node this.arr.push(value) return this } let cur = this.root let inserted = false while (true) { if (value > cur.value) { if (cur.right) { cur = cur.right } else { cur.right = node this.arr.push(value) node.parent = cur inserted = true break } } if (value < cur.value) { if (cur.left) { cur = cur.left } else { cur.left = node this.arr.push(value) node.parent = cur inserted = true break } } if (value === cur.value) { break } } // 调整树的结构 if(inserted){ this.fixTree(node) } return this } fixTree(node) { if (!node.parent) { node.color = 'black' this.root = node return } if (node.parent.color === 'black') { return } let son = node let father = node.parent let grandFather = father.parent let directionFtoG = father === grandFather.left ? 'left' : 'right' let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left'] let directionStoF = son === father.left ? 'left' : 'right' if (!uncle || uncle.color === 'black') { if (directionFtoG === directionStoF) { if (grandFather.parent) { grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father father.parent = grandFather.parent } else { this.root = father father.parent = null } father.color = 'black' grandFather.color = 'red' father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather) grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left'] father[father.left === son ? 'right' : 'left'] = grandFather grandFather.parent = father return } else { grandFather[directionFtoG] = son son.parent = grandFather son[directionFtoG] && (son[directionFtoG].parent = father) father[directionStoF] = son[directionFtoG] father.parent = son son[directionFtoG] = father this.fixTree(father) } } else { father.color = 'black' uncle.color = 'black' grandFather.color = 'red' this.fixTree(grandFather) } } } let redBlackTree = new RedBlackTree() for (let i = 0; i < arr.length; i++) { redBlackTree.insert(arr[i]) } console.log(redBlackTree.arr)
Other deduplication methods
[...new Set(arr)]
+ reduce()
Method to remove duplicates
Compare adjacent ones after sorting Whether the elements are the same, if they are different, they are added to the returned array
It is worth noting that when sorting, the default
compare(2, '2')returns 0; while reduce() When doing congruent comparison
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.sort((a, b) => { let res = a - b if (res !== 0) { return res } else { if (a === b) { return 0 } else { if (typeof a === 'number') { return -1 } else { return 1 } } } }).reduce((pre, cur) => { if (pre !== cur) { newArr.push(cur) return cur } return pre }, null)
+ map()
method to remove duplicates
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.map(a => !newArr.includes(a) && newArr.push(a))
+ reduce()
method
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = arr.reduce((pre, cur) => { !pre.includes(cur) && pre.push(cur) return pre }, [])
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let obj = {} arr.map(a => { if(!obj[JSON.stringify(a)]){ obj[JSON.stringify(a)] = 1 } }) console.log(Object.keys(obj).map(a => JSON.parse(a)))
The above is the detailed content of Deduplication and optimization of numerical arrays using js binary tree. For more information, please follow other related articles on the PHP Chinese website!