


Deduplication and optimization of numerical arrays using js binary tree
This article mainly introduces to you the relevant information about deduplication and optimization of numerical arrays using js to construct binary trees. The article introduces it in great detail through sample codes. It has certain reference learning value for everyone's study or work. Friends who need it Let’s learn together with the editor below.
Common two-layer loop to implement array deduplication
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] let newArr = [] for (let i = 0; i < arr.length; i++) { let unique = true for (let j = 0; j < newArr.length; j++) { if (newArr[j] === arr[i]) { unique = false break } } if (unique) { newArr.push(arr[i]) } } console.log(newArr)
Construct a binary tree to achieve deduplication (only applicable to numeric type arrays)
Construct the previously traversed elements into a binary tree. Each node in the tree satisfies: The value of the left child node < the value of the current node < the value of the right child node
This optimizes the process of judging whether the element has appeared before
If the element is older than the current node if the element is smaller than the current node, you only need to determine whether the element has appeared in the left subtree of the node.
let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization idea one, record the maximum and minimum values
Record the inserted elements If the maximum and minimum values are larger than the maximum element or the minimum element is smaller, insert it directly
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] class Node { constructor(value) { this.value = value this.left = null this.right = null } } class BinaryTree { constructor() { this.root = null this.arr = [] this.max = null this.min = null } insert(value) { let node = new Node(value) if (!this.root) { this.root = node this.arr.push(value) this.max = value this.min = value return this.arr } if (value > this.max) { this.arr.push(value) this.max = value this.findMax().right = node return this.arr } if (value < this.min) { this.arr.push(value) this.min = value this.findMin().left = node return this.arr } let current = this.root while (true) { if (value > current.value) { if (current.right) { current = current.right } else { current.right = node this.arr.push(value) break } } if (value < current.value) { if (current.left) { current = current.left } else { current.left = node this.arr.push(value) break } } if (value === current.value) { break } } return this.arr } findMax() { let current = this.root while (current.right) { current = current.right } return current } findMin() { let current = this.root while (current.left) { current = current.left } return current } } let binaryTree = new BinaryTree() for (let i = 0; i < arr.length; i++) { binaryTree.insert(arr[i]) } console.log(binaryTree.arr)
Optimization idea two, build a red-black tree
Build a red-black tree and balance the height of the tree
For the part about the red-black tree, please see the insertion of the red-black tree
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2] console.log(Array.from(new Set(arr))) class Node { constructor(value) { this.value = value this.left = null this.right = null this.parent = null this.color = 'red' } } class RedBlackTree { constructor() { this.root = null this.arr = [] } insert(value) { let node = new Node(value) if (!this.root) { node.color = 'black' this.root = node this.arr.push(value) return this } let cur = this.root let inserted = false while (true) { if (value > cur.value) { if (cur.right) { cur = cur.right } else { cur.right = node this.arr.push(value) node.parent = cur inserted = true break } } if (value < cur.value) { if (cur.left) { cur = cur.left } else { cur.left = node this.arr.push(value) node.parent = cur inserted = true break } } if (value === cur.value) { break } } // 调整树的结构 if(inserted){ this.fixTree(node) } return this } fixTree(node) { if (!node.parent) { node.color = 'black' this.root = node return } if (node.parent.color === 'black') { return } let son = node let father = node.parent let grandFather = father.parent let directionFtoG = father === grandFather.left ? 'left' : 'right' let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left'] let directionStoF = son === father.left ? 'left' : 'right' if (!uncle || uncle.color === 'black') { if (directionFtoG === directionStoF) { if (grandFather.parent) { grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father father.parent = grandFather.parent } else { this.root = father father.parent = null } father.color = 'black' grandFather.color = 'red' father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather) grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left'] father[father.left === son ? 'right' : 'left'] = grandFather grandFather.parent = father return } else { grandFather[directionFtoG] = son son.parent = grandFather son[directionFtoG] && (son[directionFtoG].parent = father) father[directionStoF] = son[directionFtoG] father.parent = son son[directionFtoG] = father this.fixTree(father) } } else { father.color = 'black' uncle.color = 'black' grandFather.color = 'red' this.fixTree(grandFather) } } } let redBlackTree = new RedBlackTree() for (let i = 0; i < arr.length; i++) { redBlackTree.insert(arr[i]) } console.log(redBlackTree.arr)
Other deduplication methods
[...new Set(arr)]
Through sort()
+ reduce()
Method to remove duplicates
Compare adjacent ones after sorting Whether the elements are the same, if they are different, they are added to the returned array
It is worth noting that when sorting, the default
compare(2, '2')returns 0; while reduce() When doing congruent comparison
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.sort((a, b) => { let res = a - b if (res !== 0) { return res } else { if (a === b) { return 0 } else { if (typeof a === 'number') { return -1 } else { return 1 } } } }).reduce((pre, cur) => { if (pre !== cur) { newArr.push(cur) return cur } return pre }, null)
pass includes()
+ map()
method to remove duplicates
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = [] arr.map(a => !newArr.includes(a) && newArr.push(a))
Remove duplication through includes()
+ reduce()
method
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let newArr = arr.reduce((pre, cur) => { !pre.includes(cur) && pre.push(cur) return pre }, [])
Remove duplication through the object's key-value pair + JSON object method
let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2] let obj = {} arr.map(a => { if(!obj[JSON.stringify(a)]){ obj[JSON.stringify(a)] = 1 } }) console.log(Object.keys(obj).map(a => JSON.parse(a)))
Related recommendations:
The above is the detailed content of Deduplication and optimization of numerical arrays using js binary tree. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The performance comparison of PHP array key value flipping methods shows that the array_flip() function performs better than the for loop in large arrays (more than 1 million elements) and takes less time. The for loop method of manually flipping key values takes a relatively long time.

Methods for deep copying arrays in PHP include: JSON encoding and decoding using json_decode and json_encode. Use array_map and clone to make deep copies of keys and values. Use serialize and unserialize for serialization and deserialization.

Time complexity measures the execution time of an algorithm relative to the size of the input. Tips for reducing the time complexity of C++ programs include: choosing appropriate containers (such as vector, list) to optimize data storage and management. Utilize efficient algorithms such as quick sort to reduce computation time. Eliminate multiple operations to reduce double counting. Use conditional branches to avoid unnecessary calculations. Optimize linear search by using faster algorithms such as binary search.

Multidimensional array sorting can be divided into single column sorting and nested sorting. Single column sorting can use the array_multisort() function to sort by columns; nested sorting requires a recursive function to traverse the array and sort it. Practical cases include sorting by product name and compound sorting by sales volume and price.

The best practice for performing an array deep copy in PHP is to use json_decode(json_encode($arr)) to convert the array to a JSON string and then convert it back to an array. Use unserialize(serialize($arr)) to serialize the array to a string and then deserialize it to a new array. Use the RecursiveIteratorIterator to recursively traverse multidimensional arrays.

PHP's array_group_by function can group elements in an array based on keys or closure functions, returning an associative array where the key is the group name and the value is an array of elements belonging to the group.

PHP's array_group() function can be used to group an array by a specified key to find duplicate elements. This function works through the following steps: Use key_callback to specify the grouping key. Optionally use value_callback to determine grouping values. Count grouped elements and identify duplicates. Therefore, the array_group() function is very useful for finding and processing duplicate elements.

Three common algorithms for exchanging array key values in PHP have their own advantages and disadvantages: array_flip(): simple and efficient, but the values must be unique and cannot handle multi-dimensional arrays. Manual traversal: can handle multi-dimensional arrays and control exceptions, but the code is longer and less efficient. ksort()+array_keys(): can handle any type of array and control the sort order, but it is less efficient. Practical cases show that array_flip() is the most efficient, but when dealing with multi-dimensional arrays, manual traversal is more appropriate.
