Home > Backend Development > Python Tutorial > How to implement visual boxplot in python

How to implement visual boxplot in python

零到壹度
Release: 2018-04-04 13:44:02
Original
6215 people have browsed it

This article mainly introduces how to implement visual box plots in python. The editor thinks it is quite good. Now I will share it with you and give it a reference. Let’s follow the editor to take a look.

Data description

Parameter introduction

    plt.boxplot(x, notch=None, sym=None, vert=None,   
                 whis=None, positions=None, widths=None,   
                 patch_artist=None, meanline=None, showmeans=None,   
                 showcaps=None, showbox=None, showfliers=None,   
                 boxprops=None, labels=None, flierprops=None,   
                 medianprops=None, meanprops=None,   
                 capprops=None, whiskerprops=None)
Copy after login

x: Specify the data to be drawn as a box plot;
notch: Whether to display the boxplot in the form of a notch, the default is not notch;
sym: Specify the shape of the abnormal point, the default is + sign display;
vert: Whether the boxplot needs to be placed vertically, the default is vertical Placement;
whis: Specify the distance between the upper and lower whiskers and the upper and lower quartiles, the default is 1.5 times the interquartile range;
positions: Specify the position of the box plot, the default is [0,1,2… ];
widths: Specify the width of the boxplot, the default is 0.5;
patch_artist: Whether to fill the color of the box;
meanline: Whether to express the mean in the form of a line, the default is to use points;
showmeans: Whether to display the mean, not displayed by default;
showcaps: Whether to display the two lines at the top and end of the box plot, displayed by default;
showbox: Whether to display the box of the box plot, displayed by default;
showfliers: Whether to display outliers, displayed by default;
boxprops: Set the properties of the box, such as border color, fill color, etc.;
labels: Add labels to the box plot, similar to the function of the legend;
filerprops: Set the properties of outliers, such as the shape, size, fill color, etc. of outliers;
medianprops: Set the properties of the median, such as line type, thickness, etc.;
meanprops: Set the mean properties, such as point size, color, etc.;
capprops: Set the properties of the top and end lines of the box plot, such as color, thickness, etc.;
whiskerprops: Set the properties of the whiskers, such as color, thickness, line Type, etc.;

Code implementation

    # 导入第三方模块  
    import pandas as pd  
    import matplotlib.pyplot as plt  
      
    # 读取Titanic数据集  
    titanic = pd.read_csv('titanic_train.csv')  
    # 检查年龄是否有缺失  
    any(titanic.Age.isnull())  
    # 不妨删除含有缺失年龄的观察  
    titanic.dropna(subset=['Age'], inplace=True)  
      
    # 设置图形的显示风格  
    plt.style.use('ggplot')  
      
    # 设置中文和负号正常显示  
    plt.rcParams['font.sans-serif'] = 'Microsoft YaHei'  
    plt.rcParams['axes.unicode_minus'] = False  
      
    # 绘图:整体乘客的年龄箱线图  
    plt.boxplot(x = titanic.Age, # 指定绘图数据  
                patch_artist=True, # 要求用自定义颜色填充盒形图,默认白色填充  
                showmeans=True, # 以点的形式显示均值  
                boxprops = {'color':'black','facecolor':'#9999ff'}, # 设置箱体属性,填充色和边框色  
                flierprops = {'marker':'o','markerfacecolor':'red','color':'black'}, # 设置异常值属性,点的形状、填充色和边框色  
                meanprops = {'marker':'D','markerfacecolor':'indianred'}, # 设置均值点的属性,点的形状、填充色  
                medianprops = {'linestyle':'--','color':'orange'}) # 设置中位数线的属性,线的类型和颜色  
    # 设置y轴的范围  
    plt.ylim(0,85)  
      
    # 去除箱线图的上边框与右边框的刻度标签  
    plt.tick_params(top='off', right='off')  
    # 显示图形  
    plt.show()
Copy after login


Related recommendations:

Understand Box plot

Python data visualization: Matplotlib histogram, box plot, bar chart, heat map, line chart, scatter plot. . .

Python data visualization: box plot

The above is the detailed content of How to implement visual boxplot in python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template