Python interface using OpenCV method
This time I will bring you how to use OpenCV with the Python interface. What are the precautions for using OpenCV with the Python interface? The following is a practical case, let’s take a look.
1. Configure OpenCV in Anaconda2
Decompress opencv, add system environment variables, computer-->right-click properties--> Advanced system settings-->Environment variables-->System variables-->Edit path-->Add F:\Program Files (x86)\opencv-3.2.0-vc14\build \x64\vc14\bin
Copy opencv/build/python/2.7/x64/cv2.pyd to Anaconda2/Lib/Site-packages/Note: You can see it from python/2.7 above It turns out that the official python interface of opencv only supports the Anaconda2 version. If you are installing Anaconda3, you can open cmd and then execute conda install -c https://conda.anaconda.org/menpo opencv3;You can also refer to this article to configure Anaconda3
Open ipython and test itimport cv2 print(cv2.version)
2. Basic knowledge of OpenCV
1. Reading, displaying and writing images
import cv2 import matplotlib.pyplot as plt # 读取图像,第二个参数可以为1(默认读入彩图, 可省略), 0(以灰度图读入) im = cv2.imread('empire.jpg', 1) # 函数imread()返回图像为一个标准的 NumPy 数组 h,w = im.shape[:2] print h,w # 显示图像,第一个参数是窗口的名字,其次才是我们的图像,窗口会自动调整为图像大小。 cv2.imshow('image', img) cv2.waitKey(0) # 为防止图像一闪而过,无限期的等待键盘输入 cv2.destroyAllWindows() # 关闭所有图像 # 保存图像(必须设置保存图像的路径和扩展名) cv2.imwrite('result.png', im) # 使用 plt 显示图像(可显示像素坐标及像素值)、保存图像 plt.imshow(im, cmap='gray', interpolation='bicubic') plt.show() plt.savefig('figpath.png', bbox_inches='tight')
2. Color space conversion
In OpenCV, images It is not stored in traditional RGB color channels, but in BGR order (that is, the reverse order of RGB). The default when reading images is BGR, but there are some conversion functions available. Color space conversion can be achieved using the function cvtColor().# 1.使用opencv读取并创建灰度图像,按 BGR 顺序 im = cv2.imread('empire.jpg') gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) # 2.使用matplotlib.image 读入并创建灰度图像,按 RGB 顺序 import matplotlib.image as mpl_img im = mpl_img.imread('empire.jpg') gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY) # Note: 注意1和2的区别在颜色转换代码 # 常用:cv2.COLOR_BGR2RGB、cv2.COLOR_GRAY2BGR、cv2.COLOR_BGR2HSV
3. Draw straight lines, rectangles, circles, polygons (curves) on the image
Draw straight lines: cv2.line()import cv2 # 读取图像,按 BGR 顺序 img = cv2.imread('empire.jpg') # 传入图像、起点坐标、终点坐标、线的颜色(color)、线的厚度(thickness) # color : Color of the shape. for BGR, pass it as a tuple, eg: (255,0,0) for blue. For grayscale, just pass the scalar value. # thickness : if -1 is passed for closed figures like circles, it will fill the shape, default thickness = 1. img = cv2.line(img, (0, 0), (511, 511), (255, 0, 0), 5)
# 需要传入图像、左上角顶点坐标、右下角顶点坐标、颜色、线宽 img = cv2.rectangle(img, (384, 0), (510, 128), (0, 255, 0), 3)
# 需要传入图像、圆的中心点坐标、半径、颜色、线宽 img = cv2.circle(img, (447, 63), 63, (0, 0, 255), -1) # If -1 is passed for closed figures like circles, it will fill the shape. default thickness = 1
# 数组的数据类型必须为int32,若知道曲线方程,可以生成一堆点,就可以画出曲线来啦 pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32) # 第一个参数为-1, 表明这一维的长度(点的数量)是根据后面的维度的计算出来的 pts = pts.reshape((-1,1,2)) # 如果第三个参数是False,我们得到的多边形是不闭合的(首尾不相连) img = cv2.polylines(img, [pts], True, (0, 255, 255))
font = cv2.FONT_HERSHEY_SIMPLEX # 第 3~6 个参数为:bottom-left corner where data starts、font size、color、thickness cv2.putText(img,'OpenCV',(10,500), font, 4, (255, 255, 255), 2, cv2.LINE_AA)
4. Basic operations of the image
Get and modify the pixel valueimport cv2 import numpy as np img = cv2.imread('messi5.jpg') px = img[100, 100] print px [57 63 68] # accessing only blue pixel blue = img[100, 100, 0] print blue 57 # modify the pixel img[100, 100] = [255, 255, 255] print img[100, 100] [255 255 255] # channel 2 所有值置为0 img[:, :, 2] = 0
img = cv2.imread('messi5.jpg') print img.shape (960L, 1280L, 3L) print img.size 3686400 print img.dtype uint8
img = cv2.imread('messi5.jpg') # select the ball and copy it to another region ball = img[280:340, 330:390] # 注意:340和390取不到 img[273:333, 100:160] = ball
Python opencv detects and extracts the target color
How does Python write the data in the data frame to the database
The above is the detailed content of Python interface using OpenCV method. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.

Yes, VS Code can run Python code. To run Python efficiently in VS Code, complete the following steps: Install the Python interpreter and configure environment variables. Install the Python extension in VS Code. Run Python code in VS Code's terminal via the command line. Use VS Code's debugging capabilities and code formatting to improve development efficiency. Adopt good programming habits and use performance analysis tools to optimize code performance.
