Python operates excel to read and write data
这次给大家带来python操作excel读写数据,python操作excel读写数据的注意事项有哪些,下面就是实战案例,一起来看一下。
本文实例为大家分享了python操作EXCEL的实例源码,供大家参考,具体内容如下
读EXCEL的操作:把excel的数据存储为字典类型
#coding=utf8 #导入读excel的操作库 import xlrd class GenExceptData(object): def init(self): try: self.dataDic={} #打开工作薄 self.wkbook= xlrd.open_workbook("Requirement.xls") #获取工作表“requirement” self.dataSheet=self.wkbook.sheet_by_name("requirement") #把数据按 按照相应格式写入excel表中 self.readDataToDicl() #保存文件 except Exception,e: print "Read Excel error:",e def readDataToDicl(self): try: nrows = self.dataSheet.nrows ncols = self.dataSheet.ncols print ncols ,nrows try: for rowNum in range(1,nrows): #把数据的当前行的元素与上一行元素作比较 #如果不相等执行if语句 try: singleJson={} propertyName=self.dataSheet.cell(rowNum,3).value propertyValue=self.dataSheet.cell(rowNum,4).value if self.dataSheet.cell(rowNum,0).value and self.dataSheet.cell(rowNum,2).value: mdEvent=self.dataSheet.cell(rowNum,0).value singleJson["serviceId"]=self.dataSheet.cell(rowNum,2).value singleJson[propertyName]=propertyValue print singleJson self.dataDic[mdEvent]=singleJson singleJson.clear() except Exception,e: print "Get Data Error:",e except Exception,e: print "Reading Data Error:",e except Exception,e: print "Reading Data TO Dic Error:",e def test(): GenExceptData() if name=="main": test()
写EXCEL的操作:把csv文件的数据按照需求写入到excel文件中
#coding=utf8 from readCSV import readCSV import xlwt class GenTestCase(): def init(self,path="E:\\PythonDemo\\OperExcel\\Demo.csv"): self.dataInfor=readCSV(path) #创建工作薄 self.wkbook=xlwt.Workbook() #创建表:“埋点需求” self.dataSheet=self.wkbook.add_sheet("shellt") self.creatHead() def creatHead(self): firstLine=[] #创建表头 for index in range(len(firstLine)): self.dataSheet.write(0,index,firstLine[index]) dataBody=self.dataInfor.buffer print dataBody.len() currentrow=1 for rowNum in range(1,len(dataBody)): for index in range(len(dataBody[rowNum])): if rowNum>1: if dataBody[rowNum-1][0]!=dataBody[rowNum][0] : print currentrow,rowNum if currentrow==1: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) for cols in range(6,13): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow,rowNum-1,cols,cols,data) else: for cols in range(3): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) for cols in range(6,12): cellValue=dataBody[currentrow][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write_merge(currentrow-1,rowNum-1,cols,cols,data) currentrow=rowNum+1 break for cols in range(3,6): cellValue=dataBody[rowNum][cols] cellValue=cellValue.decode("gbk") data=u"%s" %(cellValue) self.dataSheet.write(rowNum,cols,data) self.wkbook.save(r'reqq.xlsx') def test(): GenTestCase() if name=="main": test()
相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
推荐阅读:
The above is the detailed content of Python operates excel to read and write data. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

Question: How to view the Redis server version? Use the command line tool redis-cli --version to view the version of the connected server. Use the INFO server command to view the server's internal version and need to parse and return information. In a cluster environment, check the version consistency of each node and can be automatically checked using scripts. Use scripts to automate viewing versions, such as connecting with Python scripts and printing version information.

The steps to start a Redis server include: Install Redis according to the operating system. Start the Redis service via redis-server (Linux/macOS) or redis-server.exe (Windows). Use the redis-cli ping (Linux/macOS) or redis-cli.exe ping (Windows) command to check the service status. Use a Redis client, such as redis-cli, Python, or Node.js, to access the server.

Redis memory size setting needs to consider the following factors: data volume and growth trend: Estimate the size and growth rate of stored data. Data type: Different types (such as lists, hashes) occupy different memory. Caching policy: Full cache, partial cache, and phasing policies affect memory usage. Business Peak: Leave enough memory to deal with traffic peaks.

Redis persistence will take up extra memory, RDB temporarily increases memory usage when generating snapshots, and AOF continues to take up memory when appending logs. Influencing factors include data volume, persistence policy and Redis configuration. To mitigate the impact, you can reasonably configure RDB snapshot policies, optimize AOF configuration, upgrade hardware and monitor memory usage. Furthermore, it is crucial to find a balance between performance and data security.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.
