


Python implements a method to customize the order and arrangement of writing data to Excel
这篇文章主要介绍了Python实现自定义顺序、排列写入数据到Excel的方法,涉及Python针对Excel文件的数据处理及读写相关操作技巧,需要的朋友可以参考下
本文实例讲述了Python实现自定义顺序、排列写入数据到Excel的方法。分享给大家供大家参考,具体如下:
例1. 数据框顺序写入Excel:
data=a import xlsxwriter workbook = xlsxwriter.Workbook('F:/chart1.xlsx') worksheet = workbook.add_worksheet('请求接口') title = [u'订单号',u'债权编号',u'请求参数',u'创建时间',u'结果'] print data.iloc[:,0] format=workbook.add_format() format.set_border(1) format_title=workbook.add_format() format_title.set_border(1) format_title.set_bg_color('#cccccc') format_title.set_align('center') format_title.set_bold() format_ave=workbook.add_format() format_ave.set_border(1) format_ave.set_num_format('0.00') worksheet.write_row('A1',title,format_title) worksheet.write_column('A2:', data.iloc[:,0],format) worksheet.write_column('B2', data.iloc[:,1],format) worksheet.write_column('C2', data.iloc[:,2],format) worksheet.write_column('D2', data.iloc[:,3],format) worksheet.write_column('E2', data.iloc[:,4],format) workbook.close()
例2. (自动报表):
#coding: utf-8 import xlsxwriter workbook = xlsxwriter.Workbook('F:/chart.xlsx') worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) title = [u'业务名称',u'星期一',u'星期二',u'星期三',u'星期四',u'星期五',u'星期六',u'星期日',u'平均流量'] buname= [u'业务官网',u'新闻中心',u'购物频道',u'体育频道',u'亲子频道'] data = [ [150,152,158,149,155,145,148], [89,88,95,93,98,100,99], [201,200,198,175,170,198,195], [75,77,78,78,74,70,79], [88,85,87,90,93,88,84], ] print data format=workbook.add_format() format.set_border(1) format_title=workbook.add_format() format_title.set_border(1) format_title.set_bg_color('#cccccc') format_title.set_align('center') format_title.set_bold() format_ave=workbook.add_format() format_ave.set_border(1) format_ave.set_num_format('0.00') worksheet.write_row('A1',title,format_title) worksheet.write_column('A2', buname,format) worksheet.write_row('B2', data[0],format) worksheet.write_row('B3', data[1],format) worksheet.write_row('B4', data[2],format) worksheet.write_row('B5', data[3],format) worksheet.write_row('B6', data[4],format) def chart_series(cur_row): worksheet.write_formula('I'+cur_row, \ '=AVERAGE(B'+cur_row+':H'+cur_row+')',format_ave) chart.add_series({ 'categories': '=Sheet1!$B$1:$H$1', 'values': '=Sheet1!$B$'+cur_row+':$H$'+cur_row, 'line': {'color': 'black'}, 'name': '=Sheet1!$A$'+cur_row, }) for row in range(2, 7): chart_series(str(row)) chart.set_table() chart.set_style(30) chart.set_size({'width': 577, 'height': 287}) chart.set_title ({'name': u'业务流量周报图表'}) chart.set_y_axis({'name': 'Mb/s'}) worksheet.insert_chart('A8', chart) workbook.close()
相关推荐:
The above is the detailed content of Python implements a method to customize the order and arrangement of writing data to Excel. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The H5 page needs to be maintained continuously, because of factors such as code vulnerabilities, browser compatibility, performance optimization, security updates and user experience improvements. Effective maintenance methods include establishing a complete testing system, using version control tools, regularly monitoring page performance, collecting user feedback and formulating maintenance plans.

PS "Loading" problems are caused by resource access or processing problems: hard disk reading speed is slow or bad: Use CrystalDiskInfo to check the hard disk health and replace the problematic hard disk. Insufficient memory: Upgrade memory to meet PS's needs for high-resolution images and complex layer processing. Graphics card drivers are outdated or corrupted: Update the drivers to optimize communication between the PS and the graphics card. File paths are too long or file names have special characters: use short paths and avoid special characters. PS's own problem: Reinstall or repair the PS installer.

A PS stuck on "Loading" when booting can be caused by various reasons: Disable corrupt or conflicting plugins. Delete or rename a corrupted configuration file. Close unnecessary programs or upgrade memory to avoid insufficient memory. Upgrade to a solid-state drive to speed up hard drive reading. Reinstalling PS to repair corrupt system files or installation package issues. View error information during the startup process of error log analysis.

Solving the problem of slow Photoshop startup requires a multi-pronged approach, including: upgrading hardware (memory, solid-state drive, CPU); uninstalling outdated or incompatible plug-ins; cleaning up system garbage and excessive background programs regularly; closing irrelevant programs with caution; avoiding opening a large number of files during startup.

The reason for slow PS loading is the combined impact of hardware (CPU, memory, hard disk, graphics card) and software (system, background program). Solutions include: upgrading hardware (especially replacing solid-state drives), optimizing software (cleaning up system garbage, updating drivers, checking PS settings), and processing PS files. Regular computer maintenance can also help improve PS running speed.

PS card is "Loading"? Solutions include: checking the computer configuration (memory, hard disk, processor), cleaning hard disk fragmentation, updating the graphics card driver, adjusting PS settings, reinstalling PS, and developing good programming habits.

H5 is more flexible and customizable, but requires skilled technology; mini programs are quick to get started and easy to maintain, but are limited by the WeChat framework.

Python is more suitable for data science and machine learning, while JavaScript is more suitable for front-end and full-stack development. 1. Python is known for its concise syntax and rich library ecosystem, and is suitable for data analysis and web development. 2. JavaScript is the core of front-end development. Node.js supports server-side programming and is suitable for full-stack development.
