


Python digital image processing skeleton extraction and watershed algorithm
This article mainly introduces the skeleton extraction and watershed algorithm of python digital image processing. Now I will share it with you and give you a reference. Let’s take a look together
Skeleton extraction and watershed algorithm also belong to the category of morphological processing, and are placed in the morphology sub-module.
1. Skeleton extraction
Skeleton extraction, also called binary image thinning. This algorithm can refine a connected region into a width of one pixel for feature extraction and target topology representation.
The morphology submodule provides two functions for skeleton extraction, namely the Skeletonize() function and the medial_axis() function. Let’s look at the Skeletonize() function first.
The format is: skimage.morphology.skeletonize(image)
The input and output are both binary images.
Example 1:
from skimage import morphology,draw import numpy as np import matplotlib.pyplot as plt #创建一个二值图像用于测试 image = np.zeros((400, 400)) #生成目标对象1(白色U型) image[10:-10, 10:100] = 1 image[-100:-10, 10:-10] = 1 image[10:-10, -100:-10] = 1 #生成目标对象2(X型) rs, cs = draw.line(250, 150, 10, 280) for i in range(10): image[rs + i, cs] = 1 rs, cs = draw.line(10, 150, 250, 280) for i in range(20): image[rs + i, cs] = 1 #生成目标对象3(O型) ir, ic = np.indices(image.shape) circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2 circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2 image[circle1] = 1 image[circle2] = 0 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
Generate a test image with three target objects on it, and perform skeleton extraction respectively. The results are as follows:
Example 2: Using the system’s own horse pictures for skeleton extraction
from skimage import morphology,data,color import matplotlib.pyplot as plt image=color.rgb2gray(data.horse()) image=1-image #反相 #实施骨架算法 skeleton =morphology.skeletonize(image) #显示结果 fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.imshow(image, cmap=plt.cm.gray) ax1.axis('off') ax1.set_title('original', fontsize=20) ax2.imshow(skeleton, cmap=plt.cm.gray) ax2.axis('off') ax2.set_title('skeleton', fontsize=20) fig.tight_layout() plt.show()
medial_axis means the central axis. The medial axis transformation method is used to calculate the width of the foreground (1 value) target object. The format is:
skimage.morphology.medial_axis (image,mask=None,return_distance=False)
mask: mask. The default is None. If a mask is given, the skeleton algorithm will be performed only on the pixel values within the mask.
return_distance: bool value, default is False. If it is True, in addition to returning the skeleton, the distance transformation value will also be returned at the same time. The distance here refers to the distance between all points on the central axis and the background point.
import numpy as np import scipy.ndimage as ndi from skimage import morphology import matplotlib.pyplot as plt #编写一个函数,生成测试图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] mask = np.zeros((l, l)) generator = np.random.RandomState(1) points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) return mask > mask.mean() data = microstructure(l=64) #生成测试图像 #计算中轴和距离变换值 skel, distance =morphology.medial_axis(data, return_distance=True) #中轴上的点到背景像素点的距离 dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest') #用光谱色显示中轴 ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest') ax2.contour(data, [0.5], colors='w') #显示轮廓线 fig.tight_layout() plt.show()
2. Watershed algorithm
A watershed refers to a ridge in geography, and water usually flows along both sides of the ridge to different "catchment basins." The watershed algorithm is a classic algorithm for image segmentation and a mathematical morphological segmentation method based on topology theory. If the target objects in the image are connected together, it will be more difficult to segment. The watershed algorithm is often used to deal with such problems and usually achieves better results.
The watershed algorithm can be combined with distance transformation to find the "catchment basin" and "watershed boundary" to segment the image. The distance transformation of a binary image is the distance from each pixel to the nearest non-zero pixel. We can use the scipy package to calculate the distance transformation.
In the example below, two overlapping circles need to be separated. We first calculate the distance transformation from these white pixels on the circle to the black background pixels, select the maximum value in the distance transformation as the initial marker point (if it is an inverted color, take the minimum value), starting from these marker points The two catchment basins get bigger and bigger, and finally intersect at the mountain ridge. Disconnected from the mountain ridge, we get two separate circles.
Example 1: Mountain ridge image segmentation based on distance transform
import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,feature #创建两个带有重叠圆的图像 x, y = np.indices((80, 80)) x1, y1, x2, y2 = 28, 28, 44, 52 r1, r2 = 16, 20 mask_circle1 = (x - x1)**2 + (y - y1)**2 < r1**2 mask_circle2 = (x - x2)**2 + (y - y2)**2 < r2**2 image = np.logical_or(mask_circle1, mask_circle2) #现在我们用分水岭算法分离两个圆 distance = ndi.distance_transform_edt(image) #距离变换 local_maxi =feature.peak_local_max(distance, indices=False, footprint=np.ones((3, 3)), labels=image) #寻找峰值 markers = ndi.label(local_maxi)[0] #初始标记点 labels =morphology.watershed(-distance, markers, mask=image) #基于距离变换的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(8, 8)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest') ax1.set_title("Distance") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
The watershed algorithm can also be used with Gradient is combined to achieve image segmentation. Generally, gradient images have higher pixel values at the edges and lower pixel values elsewhere. Ideally, the ridges should be exactly at the edges. Therefore, we can find ridges based on gradients.
Example 2: Gradient-based watershed image segmentation
import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import morphology,color,data,filter image =color.rgb2gray(data.camera()) denoised = filter.rank.median(image, morphology.disk(2)) #过滤噪声 #将梯度值低于10的作为开始标记点 markers = filter.rank.gradient(denoised, morphology.disk(5)) <10 markers = ndi.label(markers)[0] gradient = filter.rank.gradient(denoised, morphology.disk(2)) #计算梯度 labels =morphology.watershed(gradient, markers, mask=image) #基于梯度的分水岭算法 fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6)) axes = axes.ravel() ax0, ax1, ax2, ax3 = axes ax0.imshow(image, cmap=plt.cm.gray, interpolation='nearest') ax0.set_title("Original") ax1.imshow(gradient, cmap=plt.cm.spectral, interpolation='nearest') ax1.set_title("Gradient") ax2.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax2.set_title("Markers") ax3.imshow(labels, cmap=plt.cm.spectral, interpolation='nearest') ax3.set_title("Segmented") for ax in axes: ax.axis('off') fig.tight_layout() plt.show()
Related recommendations:
Advanced morphological processing of python digital image processing
The above is the detailed content of Python digital image processing skeleton extraction and watershed algorithm. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Efficient training of PyTorch models on CentOS systems requires steps, and this article will provide detailed guides. 1. Environment preparation: Python and dependency installation: CentOS system usually preinstalls Python, but the version may be older. It is recommended to use yum or dnf to install Python 3 and upgrade pip: sudoyumupdatepython3 (or sudodnfupdatepython3), pip3install--upgradepip. CUDA and cuDNN (GPU acceleration): If you use NVIDIAGPU, you need to install CUDATool

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

When selecting a PyTorch version under CentOS, the following key factors need to be considered: 1. CUDA version compatibility GPU support: If you have NVIDIA GPU and want to utilize GPU acceleration, you need to choose PyTorch that supports the corresponding CUDA version. You can view the CUDA version supported by running the nvidia-smi command. CPU version: If you don't have a GPU or don't want to use a GPU, you can choose a CPU version of PyTorch. 2. Python version PyTorch

MinIO Object Storage: High-performance deployment under CentOS system MinIO is a high-performance, distributed object storage system developed based on the Go language, compatible with AmazonS3. It supports a variety of client languages, including Java, Python, JavaScript, and Go. This article will briefly introduce the installation and compatibility of MinIO on CentOS systems. CentOS version compatibility MinIO has been verified on multiple CentOS versions, including but not limited to: CentOS7.9: Provides a complete installation guide covering cluster configuration, environment preparation, configuration file settings, disk partitioning, and MinI

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.
