The longest common sequence (longest common sequence) and the longest common substring (longest common substring) are not the same thing. The following article mainly introduces you to the relevant information about the implementation of the longest common subsequence in JavaScript. , friends in need can refer to it.
Introduction
The Longest Common Subsequence LCS is to extract all the possible subsequences from the given two sequences X and Y. The possible extra characters are arranged in the order in which they are arranged in the original sequence. The algorithm for LCS problems has a wide range of uses. For example, in the management of different versions of software, the LCS algorithm is used to find the similarities and differences between the old and new versions; in software testing, the LCS algorithm is used to compare recorded and played back sequences. In the field of genetic engineering, the LCS algorithm is used The algorithm checks the similarities and differences between the patient's DNA strand and the bond's DNA strand; in the anti-plagiarism system, the LCS algorithm is used to check the plagiarism rate of the paper. The LCS algorithm can also be used for program code similarity measurement, human running sequence retrieval, video segment matching, etc., so research on the LCS algorithm has high application value.
Basic concepts
Subsequence: A subsequence of a specific sequence is zero or more elements in a given sequence The result obtained after removing it (without changing the relative order between elements). For example, the subsequences of the sequence are: , , Common subsequence: Given sequences X and Y, sequence Z is a subsequence of X and a subsequence of Y, then Z is the common subsequence of X and Y. For example, X=[A,B,C,B,D,A,B], Y=[B,D,C,A,B,A[, then the sequence Z=[B,C,A] is X and Y The common subsequence of , its length is 3. But Z is not the longest common subsequence of X and Y, and the sequences [B, C, B, A] and [B, D, A, B] are also the longest common subsequences of X and Y, with a length of 4 , and X and Y do not have a common subsequence with a length greater than or equal to 5. For the common subsequences of the sequence [A, B, C] and the sequence [E, F, G], there is only the empty sequence []. Longest common subsequence: Given sequences X and Y, select the one or several with the longest length from all their common subsequences. Give me a picture to explain: We can see The subsequence is not necessarily continuous, what is continuous is the substring. Problem Analysis We still start the analysis from a matrix and derive the state transition equation ourselves. First of all, we convert the problem into a concept that is familiar enough to the front end. Instead of calling it serially, it can be thought of as an array or a string. To keep things simple, let's just assume that two strings are being compared. We focus on the concept of "subsequence", which can delete multiple or zero ones, or all of them. At this time our first subsequence is an empty string (if our sequence is not a string, we can still)! This is something you really need to pay attention to! Many people just can't understand the chart in "Introduction to Algorithms", and there are also many bloggers who don't pretend to understand. We always compare from left to right, and of course the first string, because it is the height of the matrix, is placed vertically.
Substring: A new series formed by deleting zero or several characters from the front or the end of a sequence, or both at the same time. The difference is that subsequences can have characters cut out from the middle. How many subsequences are there in the string cnblogs? Obviously there are 27 of them, such as cb, cgs, etc. are all their subsequencesx "" B D C A B A ##"" ##A B C D A B If X = "ABCDAB" and Y = "BDCABA", each takes out the shortest sequence, that is, compares the empty string with the empty string . The solution of the LCS equation is a number, so this table can only be filled with numbers. The length of the common area of two empty strings is 0.
"" | B | D | C | A | B | A | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
C | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
x | "" | B | D | C | A | B | A | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
0 | ##B | ||||||||||||
C | |||||||||||||
D | |||||||||||||
A | |||||||||||||
B | |||||||||||||
B | D | C | A | B | A | ##"" | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | ##A | 0 | |||||||
0 | 0 | 1 | ##B | 0 | |||||||||
0 | |||||||||||||
0 | |||||||||||||
0 | |||||||||||||
0 | |||||||||||||
C | A | B | A | #"" | 0 | 0 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | ##A | 0 | 0 | 0 | |||||||
1 | 1 | 1 | ##B | 0 | C | 0 | |||||||
D | 0 | ||||||||||||
A | 0 | ||||||||||||
B | 0 | ||||||||||||
If Then let's look at B first, ${X_1} == ${Y_0}, we get a new public substring, and we should add 1. why? Because our matrix is a state table, describing the state migration process from left to right and top to bottom, and these states are accumulated based on existing states. What we need to confirm now is the relationship between the value of the grid we want to fill in and the values of the grids around it that have already been filled in. At present, there is too little information and it is just an isolated point, so just fill in 1. | |||||||||||||
x | "" |
D
B | A | #"" | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | ##A | 0 | 0 | 0 | 0 | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | ##B | 0 | 1 | ##C | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0 | A | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
x | "" | B | D | C | A | B | A | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
0 | 0 | 0 | 0 | 1 | 1 | 1 | ##B | ||||||
1 | 1 | 1 | 1 | 2 | #C | ||||||||
D | |||||||||||||
A | |||||||||||||
B | |||||||||||||
At this step, we can summarize some rules. Then we will verify our ideas through calculations and add new rules or limiting conditions to improve them. |
Look at the five lines, send more X If the subsequence set of C and ABC is larger than the subsequence set of AB, then it and the B subsequence set of Y are larger. Even if they are not larger, they cannot be smaller than the original ones. Obviously the newly added C cannot become a combat power and is not a common character between the two, so the value should be equal to the subsequence set of AB.
×B | D | C | A | B | A | ##"" | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | ##A | 0 | |||||||
0 | 0 | 1 | 1 | 1 | ##B | 0 | 1 | ||||||
1 | 1 | 2 | 2 | #C | 0 | 1 | |||||||
##D | 0 | A | |||||||||||
B | |||||||||||||