Table of Contents
Binary tree and binary search tree
Related terms about the tree:
Code implementation
Insert a key into the tree
Complete the in-order traversal method
Pre-order traversal, post-order traversal
Do it first Let’s test it
Find the minimum and maximum values
所搜特定值
移除节点
测试删除节点
存在的问题
Home Web Front-end JS Tutorial js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree

js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree

Aug 03, 2018 pm 03:44 PM
javascript front end

Regarding the establishment and traversal of binary trees, this article gives a detailed introduction, and the algorithms of pre-order binary tree traversal, in-order binary tree traversal, and post-order binary tree traversal are also explained, and the code is quoted for the purpose of making it easier to Everyone can see it more clearly. The introduction of this article should start with binary trees and binary search trees for easy understanding. apache php mysql

Binary tree and binary search tree

js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree

Node: Each element in the tree Called a node,

Root node: A node located at the vertex of the entire tree. It has no parent node, as shown in Figure 5

Child nodes: Descendants of other nodes

Leaves Node: Elements without child nodes are called leaf nodes, as shown in Figure 3 8 24

Binary tree: A binary tree is a data structure, and its organizational relationship is like a tree in nature. The official language definition is: It is a set of finite elements, which is either empty or consists of an element called the root and two disjoint binary trees called the left subtree and the right subtree respectively.

Binary search tree:
Binary search tree is also called binary search tree (BST). It only allows us to store a smaller value in the left node than the parent node, and a smaller value in the right node than the parent node. For larger values, the picture above shows a binary search tree.

Code implementation

First create a class to represent a binary search tree. There should be a Node class inside it to create nodes

    function BinarySearchTree () {
        var Node = function(key) {
            this.key = key,
            this.left = null,
            this.right = null
        }
        var root = null
    }
Copy after login

It should also have some Method:

  • insert(key) Insert a new key

  • inOrderTraverse() Perform in-order traversal of the tree and print the result

  • preOrderTraverse() Performs a pre-order traversal of the tree and prints the results

  • postOrderTraverse() Performs a post-order traverse of the tree and prints the results

  • search(key) searches for the key in the tree, returns true if it exists, returns fasle if it does not exist

  • findMin() returns the minimum value in the tree

  • findMax() Returns the maximum value in the tree

  • remove(key) Delete a key in the tree

Insert a key into the tree

Insert a new key into the tree. The homepage should create a Node class instance to represent the new node, so you need to new the Node class and pass it in The key value that needs to be inserted will be automatically initialized to a new node with null left and right nodes

Then, some judgments need to be made. First, judge whether the tree is empty. If it is empty, the newly inserted node will be used as the root. Node, if it is not empty, call an auxiliary method insertNode() method, pass the root node and new node into

    this.insert = function(key) {
        var newNode = new Node(key)
        if(root === null) {
            root = newNode
        } else {
            insertNode(root, newNode)
        }
    }
Copy after login

Define the insertNode() method, this method will call itself recursively to find the new node. Add the appropriate position of the node

    var insertNode = function(node, newNode) {
        if (newNode.key <= node.key) {
            if (node.left === null) {
                node.left = newNode
            }else {
                insertNode(node.left, newNode)
            }
        }else {
            if (node.right === null) {
                node.right = newNode
            }else {
                insertNode(node.right, newNode)
            }
        }
    }
Copy after login

Complete the in-order traversal method

To implement the in-order traversal, we need an inOrderTraverseNode(node) method, which can call itself recursively to traverse each node

    this.inOrderTraverse = function() {
        inOrderTraverseNode(root)
    }
Copy after login

This method will print the key value of each node. It requires a recursive termination condition - check whether the incoming node is null. If it is not null, continue to call itself recursively to check the left and left of the node. Right node
is also very simple to implement:

    var inOrderTraverseNode = function(node) {
        if (node !== null) {
            inOrderTraverseNode(node.left)
            console.log(node.key)
            inOrderTraverseNode(node.right)
        }
    }
Copy after login

Pre-order traversal, post-order traversal

With the method of mid-order traversal, you only need to make slight changes to achieve pre-order. Traversal and post-order traversal
The above code:

In this way, the entire tree can be traversed in in-order

    // 实现先序遍历
    this.preOrderTraverse = function() {
        preOrderTraverseNode(root)
    }
    var preOrderTraverseNode = function(node) {
        if (node !== null) {
            console.log(node.key)
            preOrderTraverseNode(node.left)
            preOrderTraverseNode(node.right)
        }
    }

    // 实现后序遍历
    this.postOrderTraverse = function() {
        postOrderTraverseNode(root)
    }
    var postOrderTraverseNode = function(node) {
        if (node !== null) {
            postOrderTraverseNode(node.left)
            postOrderTraverseNode(node.right)
            console.log(node.key)
        }
    }
Copy after login

Did you find it? In fact, the internal statements change the front and rear positions. This also happens to conform to the three traversal rules: pre-order traversal (root-left-right), mid-order traversal (left-root-right), mid-order traversal (left-right-root)

Do it first Let’s test it

The complete code now is as follows:

    function BinarySearchTree () {
        var Node = function(key) {
            this.key = key,
            this.left = null,
            this.right = null
        }
        var root = null
        
        //插入节点
        this.insert = function(key) {
            var newNode = new Node(key)
            if(root === null) {
                root = newNode
            } else {
                insertNode(root, newNode)
            }
        }
        var insertNode = function(node, newNode) {
            if (newNode.key <= node.key) {
                if (node.left === null) {
                    node.left = newNode
                }else {
                    insertNode(node.left, newNode)
                }
            }else {
                if (node.right === null) {
                    node.right = newNode
                }else {
                    insertNode(node.right, newNode)
                }
            }
        } 
        
        //实现中序遍历
        this.inOrderTraverse = function() {
            inOrderTraverseNode(root)
        }
        var inOrderTraverseNode = function(node) {
            if (node !== null) {
                inOrderTraverseNode(node.left)
                console.log(node.key)
                inOrderTraverseNode(node.right)
            }
        }
        // 实现先序遍历
        this.preOrderTraverse = function() {
            preOrderTraverseNode(root)
        }
        var preOrderTraverseNode = function(node) {
            if (node !== null) {
                console.log(node.key)
                preOrderTraverseNode(node.left)
                preOrderTraverseNode(node.right)
            }
        }

        // 实现后序遍历
        this.postOrderTraverse = function() {
            postOrderTraverseNode(root)
        }
        var postOrderTraverseNode = function(node) {
            if (node !== null) {
                postOrderTraverseNode(node.left)
                postOrderTraverseNode(node.right)
                console.log(node.key)
            }
        }
    }
Copy after login

has actually completed the method of adding new nodes and traversing, let’s test it:

Define an array, There are some elements in it

var arr = [9,6,3,8,12,15]
Copy after login

We insert each element in arr into the binary search tree accordingly, and then print the result

    var tree = new BinarySearchTree()
    arr.map(item => {
        tree.insert(item)
    })
    tree.inOrderTraverse()
    tree.preOrderTraverse()
    tree.postOrderTraverse()
Copy after login

After running the code, let’s first take a look at the inserted node The final situation of the entire tree:

js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree

Output result

In-order traversal: <br/>3<br/>6<br/>8<br/>9<br/>12<br/>15<br/>

Preorder traversal: <br/>9<br/>6<br/>3<br/>8<br/>12 <br/>15<br/>

Post-order traversal: <br/>3<br/>8<br/>6<br/>15<br/>12<br/>9<br/>

Obviously, the results are as expected, so we use the above JavaScript code to implement node insertion into the tree and three traversal methods. At the same time, it is obvious that in Binary search tree species, the value of the leftmost node is the smallest, and the value of the rightmost node is the largest, so the binary search tree can easily get the maximum and minimum values

Find the minimum and maximum values

How to do it? In fact, you only need to pass the root node into the minNode/or maxNode method, and then judge the node as the left (minNode)/right (maxNode) node through a loop as null

Implementation code:

    // 查找最小值
    this.findMin = function() {
        return minNode(root)
    }
    var minNode = function(node) {
        if (node) {
            while (node && node.left !== null) {
                node = node.left
            }
            return node.key
        }
        return null
    }
    
    // 查找最大值
    this.findMax = function() {
        return maxNode(root)
    }
    var maxNode = function (node) {
        if(node) {
            while (node && node.right !== null) {
                node =node.right
            }
            return node.key
        }
        return null
    }
Copy after login

所搜特定值

this.search = function(key) {
    return searchNode(root, key)
}
Copy after login

同样,实现它需要定义一个辅助方法,这个方法首先会检验node的合法性,如果为null,直接退出,并返回fasle。如果传入的key比当前传入node的key值小,它会继续递归查找node的左侧节点,反之,查找右侧节点。如果找到相等节点,直接退出,并返回true

    var searchNode = function(node, key) {
        if (node === null) {
            return false
        }
        if (key < node.key) {
            return searchNode(node.left, key)
        }else if (key > node.key) {
            return searchNode(node.right, key)
        }else {
            return true
        }
    }
Copy after login

移除节点

移除节点的实现情况比较复杂,它会有三种不同的情况:


    • 需要移除的节点是一个叶子节点

    • 需要移除的节点包含一个子节点

    • 需要移除的节点包含两个子节点

    和实现搜索指定节点一元,要移除某个节点,必须先找到它所在的位置,因此移除方法的实现中部分代码和上面相同:

        // 移除节点
        this.remove = function(key) {
            removeNode(root,key)
        }
        var removeNode = function(node, key) {
            if (node === null) {
                return null
            }
            if (key < node.key) {
                node.left = removeNode(node.left, key)
                return node
            }else if(key > node.key) {
                node.right = removeNode(node.right,key)
                return node
            }else{
                //需要移除的节点是一个叶子节点
                if (node.left === null && node.right === null) {
                    node = null
                    return node
                }
                //需要移除的节点包含一个子节点
                if (node.letf === null) {
                    node = node.right
                    return node
                }else if (node.right === null) {
                    node = node.left
                    return node
                }
                //需要移除的节点包含两个子节点
                var aux = findMinNode(node.right)
                node.key = aux.key
                node.right = removeNode(node.right, axu.key)
                return node
            }
        }
        var findMinNode = function(node) {
            if (node) {
                while (node && node.left !== null) {
                    node = node.left
                }
                return node
            }
            return null
        }
    Copy after login

    其中,移除包含两个子节点的节点是最复杂的情况,它包含左侧节点和右侧节点,对它进行移除主要需要三个步骤:

    1. 需要找到它右侧子树中的最小节点来代替它的位置

    2. 将它右侧子树中的最小节点移除

    3. 将更新后的节点的引用指向原节点的父节点

    有点绕儿,但必须这样,因为删除元素后的二叉搜索树必须保持它的排序性质

    测试删除节点

    tree.remove(8)
    tree.inOrderTraverse()
    Copy after login

    打印结果:

    3<br/>6<br/>9<br/>12<br/>15<br/>

    8 这个节点被成功删除了,但是对二叉查找树进行中序遍历依然是保持排序性质的

    到这里,一个简单的二叉查找树就基本上完成了,我们为它实现了,添加、查找、删除以及先中后三种遍历方法

    存在的问题

    但是实际上这样的二叉查找树是存在一些问题的,当我们不断的添加更大/更小的元素的时候,会出现如下情况:

    tree.insert(16)
    tree.insert(17)
    tree.insert(18)
    Copy after login

    来看看现在整颗树的情况:

    js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree

    看图片容易得出它是不平衡的,这又会引出平衡树的概念,要解决这个问题,还需要更复杂的实现,例如:AVL树,红黑树 哎,之后再慢慢去学习吧

    相关文章:

    二叉树遍历算法-php的示例

    二叉树的中序遍历,该怎么解决

    The above is the detailed content of js_Three algorithms for binary tree traversal in front, middle and back order_implementation of simple binary tree. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

WebSocket and JavaScript: key technologies for implementing real-time monitoring systems WebSocket and JavaScript: key technologies for implementing real-time monitoring systems Dec 17, 2023 pm 05:30 PM

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

PHP and Vue: a perfect pairing of front-end development tools PHP and Vue: a perfect pairing of front-end development tools Mar 16, 2024 pm 12:09 PM

PHP and Vue: a perfect pairing of front-end development tools. In today's era of rapid development of the Internet, front-end development has become increasingly important. As users have higher and higher requirements for the experience of websites and applications, front-end developers need to use more efficient and flexible tools to create responsive and interactive interfaces. As two important technologies in the field of front-end development, PHP and Vue.js can be regarded as perfect tools when paired together. This article will explore the combination of PHP and Vue, as well as detailed code examples to help readers better understand and apply these two

JavaScript and WebSocket: Building an efficient real-time weather forecasting system JavaScript and WebSocket: Building an efficient real-time weather forecasting system Dec 17, 2023 pm 05:13 PM

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

Simple JavaScript Tutorial: How to Get HTTP Status Code Simple JavaScript Tutorial: How to Get HTTP Status Code Jan 05, 2024 pm 06:08 PM

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Questions frequently asked by front-end interviewers Questions frequently asked by front-end interviewers Mar 19, 2024 pm 02:24 PM

In front-end development interviews, common questions cover a wide range of topics, including HTML/CSS basics, JavaScript basics, frameworks and libraries, project experience, algorithms and data structures, performance optimization, cross-domain requests, front-end engineering, design patterns, and new technologies and trends. . Interviewer questions are designed to assess the candidate's technical skills, project experience, and understanding of industry trends. Therefore, candidates should be fully prepared in these areas to demonstrate their abilities and expertise.

Is Django front-end or back-end? check it out! Is Django front-end or back-end? check it out! Jan 19, 2024 am 08:37 AM

Django is a web application framework written in Python that emphasizes rapid development and clean methods. Although Django is a web framework, to answer the question whether Django is a front-end or a back-end, you need to have a deep understanding of the concepts of front-end and back-end. The front end refers to the interface that users directly interact with, and the back end refers to server-side programs. They interact with data through the HTTP protocol. When the front-end and back-end are separated, the front-end and back-end programs can be developed independently to implement business logic and interactive effects respectively, and data exchange.

Exploring Go language front-end technology: a new vision for front-end development Exploring Go language front-end technology: a new vision for front-end development Mar 28, 2024 pm 01:06 PM

As a fast and efficient programming language, Go language is widely popular in the field of back-end development. However, few people associate Go language with front-end development. In fact, using Go language for front-end development can not only improve efficiency, but also bring new horizons to developers. This article will explore the possibility of using the Go language for front-end development and provide specific code examples to help readers better understand this area. In traditional front-end development, JavaScript, HTML, and CSS are often used to build user interfaces

Django: A magical framework that can handle both front-end and back-end development! Django: A magical framework that can handle both front-end and back-end development! Jan 19, 2024 am 08:52 AM

Django: A magical framework that can handle both front-end and back-end development! Django is an efficient and scalable web application framework. It is able to support multiple web development models, including MVC and MTV, and can easily develop high-quality web applications. Django not only supports back-end development, but can also quickly build front-end interfaces and achieve flexible view display through template language. Django combines front-end development and back-end development into a seamless integration, so developers don’t have to specialize in learning

See all articles