Java common classes-Usage case analysis of Random class
This article introduces the usage of the Random class, a commonly used Java class. The following is a practical case. There is no additional text explanation. I have written everything that needs to be explained in the code comments.
import java.util.Random;public class random1 { public static void main(String[] args){ //两种构造函数 Random r1=new Random(); //Random r2=new Random(120); 使用单个 long 种子创建一个新的随机数生成器。 //System.out.println(r1.next(2));返回值为保护类型 //System.out.println(r2.next(2)); System.out.println(r1.nextBoolean());//返回下一个伪随机数,它是取自此随机数生成器序列的均匀分布的 boolean 值。 System.out.println(r1.nextBoolean()); System.out.println("+++++++++++"); byte[] by1=new byte[5]; byte[] by2=new byte[5]; r1.nextBytes(by1);//生成随机字节并将其置于用户提供的 byte 数组中。 r1.nextBytes(by2); for(int i=0;i<by1.length;i++){ System.out.print(by1[i]+" "); } System.out.println(); for(int j=0;j<by2.length;j++){ System.out.print(by2[j]+" "); } System.out.println(); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、在 0.0 和 1.0 之间均匀分布的 double 值。 System.out.println(r1.nextDouble()); System.out.println(r1.nextDouble()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、在 0.0 和 1.0 之间均匀分布的 float 值。 System.out.println(r1.nextFloat()); System.out.println(r1.nextFloat()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、呈高斯(“正态”)分布的 double 值,其平均值是 0.0,标准差是 1.0。 System.out.println(r1.nextGaussian()); System.out.println(r1.nextGaussian()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是此随机数生成器的序列中均匀分布的 int 值。 System.out.println(r1.nextInt()); System.out.println(r1.nextInt()); System.out.println("+++++++++++"); //返回一个伪随机数,它是取自此随机数生成器序列的、在 0(包括)和指定值(不包括)之间均匀分布的 int 值。 System.out.println(r1.nextInt(100)); System.out.println(r1.nextInt(50)); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的均匀分布的 long 值 System.out.println(r1.nextLong()); System.out.println(r1.nextLong()); //r1.setSeed(10);使用单个 long 种子设置此随机数生成器的种子。 } }
Running results:
Compiling random1.java....... -----------OUTPUT----------- falsefalse +++++++++++-55 -112 41 -78 93 54 127 -93 -22 120 +++++++++++0.69656134440266490.06445584272260563 +++++++++++0.285779950.8657566 +++++++++++-0.15436582029316171.4500847476555192 +++++++++++1824132073-436413982 +++++++++++2921 +++++++++++3295074968265391496 1387264859162260419[Finished in 1.2s]
import java.util.Random;public class random1 { public static void main(String[] args){ //两种构造函数 Random r1=new Random(); //Random r2=new Random(120); 使用单个 long 种子创建一个新的随机数生成器。 //System.out.println(r1.next(2));返回值为保护类型 //System.out.println(r2.next(2)); System.out.println(r1.nextBoolean());//返回下一个伪随机数,它是取自此随机数生成器序列的均匀分布的 boolean 值。 System.out.println(r1.nextBoolean()); System.out.println("+++++++++++"); byte[] by1=new byte[5]; byte[] by2=new byte[5]; r1.nextBytes(by1);//生成随机字节并将其置于用户提供的 byte 数组中。 r1.nextBytes(by2); for(int i=0;i<by1.length;i++){ System.out.print(by1[i]+" "); } System.out.println(); for(int j=0;j<by2.length;j++){ System.out.print(by2[j]+" "); } System.out.println(); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、在 0.0 和 1.0 之间均匀分布的 double 值。 System.out.println(r1.nextDouble()); System.out.println(r1.nextDouble()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、在 0.0 和 1.0 之间均匀分布的 float 值。 System.out.println(r1.nextFloat()); System.out.println(r1.nextFloat()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的、呈高斯(“正态”)分布的 double 值,其平均值是 0.0,标准差是 1.0。 System.out.println(r1.nextGaussian()); System.out.println(r1.nextGaussian()); System.out.println("+++++++++++"); //返回下一个伪随机数,它是此随机数生成器的序列中均匀分布的 int 值。 System.out.println(r1.nextInt()); System.out.println(r1.nextInt()); System.out.println("+++++++++++"); //返回一个伪随机数,它是取自此随机数生成器序列的、在 0(包括)和指定值(不包括)之间均匀分布的 int 值。 System.out.println(r1.nextInt(100)); System.out.println(r1.nextInt(50)); System.out.println("+++++++++++"); //返回下一个伪随机数,它是取自此随机数生成器序列的均匀分布的 long 值 System.out.println(r1.nextLong()); System.out.println(r1.nextLong()); //r1.setSeed(10);使用单个 long 种子设置此随机数生成器的种子。 } }
Running results:
Compiling random1.java....... -----------OUTPUT----------- falsefalse +++++++++++-55 -112 41 -78 93 54 127 -93 -22 120 +++++++++++0.69656134440266490.06445584272260563 +++++++++++0.285779950.8657566 +++++++++++-0.15436582029316171.4500847476555192 +++++++++++1824132073-436413982 +++++++++++2921 +++++++++++3295074968265391496 1387264859162260419[Finished in 1.2s]
Related articles:
JAVA Random class, array learning
Common classes that must be understood in java
Related videos:
Comprehensive analysis of Java annotations
The above is the detailed content of Java common classes-Usage case analysis of Random class. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

This article explores methods for sharing data between Cucumber steps, comparing scenario context, global variables, argument passing, and data structures. It emphasizes best practices for maintainability, including concise context use, descriptive

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability
