Home Backend Development C#.Net Tutorial C++ solution: classic case of multi-thread synchronization: producer-consumer problem

C++ solution: classic case of multi-thread synchronization: producer-consumer problem

Aug 06, 2018 pm 01:56 PM

Copied from Wikipedia:

##producer-consumer problem (English: Producer-consumer problem), also known as limited buffer problem (English) : Bounded-buffer problem), is a classic case of multi-thread synchronization problem. This question describes a problem that occurs when two threads sharing a fixed-size buffer - the so-called "producer" and "consumer" - actually run. The main role of the producer is to generate a certain amount of data and put it in the buffer, and then repeat the process. At the same time, the consumer is also consuming the data in the buffer. The key to this problem is to ensure that the producer does not add data when the buffer is full, and the consumer does not consume data when the buffer is empty.

To solve this problem, the producer must sleep when the buffer is full (or simply give up the data). The producer cannot be awakened until the next time the consumer consumes the data in the buffer. Start adding data to the buffer. Similarly, you can also let the consumer go to sleep when the buffer is empty, wait until the producer adds data to the buffer, and then wake up the consumer.

This article uses an ItemRepository class to represent the product warehouse, which contains an array and two circular queues represented by coordinates, and a std::mutex member to ensure that it is read and written by only one thread at a time. (In order to ensure that the printed messages are line by line, the mutex ╮(╯▽╰)╭ is also borrowed when it is idle). The two std::condition_variables represent the status of the queue being full and not empty, thereby ensuring It is not full when it is produced, but not empty when it is consumed.

#pragma once
#include <chrono>//std::chrono
#include <mutex>//std::mutex,std::unique_lock,std::lock_guard
#include <thread>//std::thread
#include <condition_variable>//std::condition_variable
#include <iostream>//std::cout,std::endl
#include <map>//std::map
namespace MyProducerToConsumer {
    static const int gRepositorySize = 10;//total size of the repository
    static const int gItemNum = 97;//number of products to produce
    std::mutex produce_mtx, consume_mtx;//mutex for all the producer thread or consumer thread
    std::map<std::thread::id, int> threadPerformance;//records of every thread&#39;s producing/consuming number
    struct ItemRepository {//repository class
        int m_ItemBuffer[gRepositorySize];//Repository itself (as a circular queue)
        int m_ProducePos;//rear position of circular queue
        int m_ConsumePos;//head position of circular queue
        std::mutex m_mtx;//mutex for operating the repository
        std::condition_variable m_RepoUnfull;//indicating that this repository is unfull(then producers can produce items)
        std::condition_variable m_RepoUnempty;//indicating that this repository is unempty(then consumers can produce items)
    }gItemRepo;

    void ProduceItem(ItemRepository *ir, int item) {
        std::unique_lock <std::mutex>ulk(ir->m_mtx);
        while ((ir->m_ProducePos + 1) % gRepositorySize == ir->m_ConsumePos) {//full(spare one slot for indicating)
            std::cout << "Reposity is full. Waiting for consumers..." << std::endl;
            ir->m_RepoUnfull.wait(ulk);//unlocking ulk and waiting for unfull condition
        }
        //when unfull
        ir->m_ItemBuffer[ir->m_ProducePos++] = item;//procude and shift
        std::cout << "Item No." << item << " produced successfully by "
            <<std::this_thread::get_id()<<"!" << std::endl;
        threadPerformance[std::this_thread::get_id()]++;
        if (ir->m_ProducePos == gRepositorySize)//loop
            ir->m_ProducePos = 0;
        ir->m_RepoUnempty.notify_all();//item produced, so it&#39;s unempty; notify all consumers
    }

    int ConsumeItem(ItemRepository *ir) {
        std::unique_lock<std::mutex>ulk(ir->m_mtx);
        while (ir->m_ConsumePos == ir->m_ProducePos) {//empty
            std::cout << "Repository is empty.Waiting for producing..." << std::endl;
            ir->m_RepoUnempty.wait(ulk);
        }
        int item = ir->m_ItemBuffer[ir->m_ConsumePos++];
        std::cout << "Item No." << item << " consumed successfully by "
            <<std::this_thread::get_id()<<"!" << std::endl;
        threadPerformance[std::this_thread::get_id()]++;
        if (ir->m_ConsumePos == gRepositorySize)
            ir->m_ConsumePos = 0;
        ir->m_RepoUnfull.notify_all();//item consumed, so it&#39;s unempty; notify all consumers
        return item;
    }

    void ProducerThread() {
        static int produced = 0;//static variable to indicate the number of produced items
        while (1) {
            std::this_thread::sleep_for(std::chrono::milliseconds(10));//sleep long enough in case it runs too fast for other threads to procude
            std::lock_guard<std::mutex>lck(produce_mtx);//auto unlock when break
            produced++;
            if (produced > gItemNum)break;
            gItemRepo.m_mtx.lock();
            std::cout << "Producing item No." << produced << "..." << std::endl;
            gItemRepo.m_mtx.unlock();
            ProduceItem(&gItemRepo, produced);
        }
        gItemRepo.m_mtx.lock();
        std::cout << "Producer thread " << std::this_thread::get_id()
            << " exited." << std::endl;
        gItemRepo.m_mtx.unlock();
    }

    void ConsumerThread() {
        static int consumed = 0;
        while (1) {
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            std::lock_guard<std::mutex>lck(consume_mtx);
            consumed++;
            if (consumed > gItemNum)break;
            gItemRepo.m_mtx.lock();
            std::cout << "Consuming item available..." << std::endl;
            gItemRepo.m_mtx.unlock();
            ConsumeItem(&gItemRepo);
        }
        gItemRepo.m_mtx.lock();
        std::cout << "Consumer thread " << std::this_thread::get_id()
            << " exited." << std::endl;
        gItemRepo.m_mtx.unlock();
    }

    void InitItemRepository(ItemRepository* ir) {
        ir->m_ConsumePos = 0;
        ir->m_ProducePos = 0;
    }

    void Run() {
        InitItemRepository(&gItemRepo);
        std::thread thdConsume[11];
        std::thread thdProduce[11];
        for (auto& t : thdConsume)t = std::thread(ConsumerThread);
        for (auto& t : thdProduce)t = std::thread(ProducerThread);
        for (auto& t : thdConsume)t.join();
        for (auto& t : thdProduce)t.join();
        for (auto& iter : threadPerformance)cout << iter.first << ":" << iter.second << endl;
    }
}
Copy after login

Related articles:

Detailed explanation of examples of java producers and consumers

Java multi-threaded concurrent collaborative producer consumption Design pattern

The above is the detailed content of C++ solution: classic case of multi-thread synchronization: producer-consumer problem. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

.NET Deep Dive: Mastering Asynchronous Programming, LINQ, and EF Core .NET Deep Dive: Mastering Asynchronous Programming, LINQ, and EF Core Mar 31, 2025 pm 04:07 PM

The core concepts of .NET asynchronous programming, LINQ and EFCore are: 1. Asynchronous programming improves application responsiveness through async and await; 2. LINQ simplifies data query through unified syntax; 3. EFCore simplifies database operations through ORM.

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

How to use various symbols in C language How to use various symbols in C language Apr 03, 2025 pm 04:48 PM

The usage methods of symbols in C language cover arithmetic, assignment, conditions, logic, bit operators, etc. Arithmetic operators are used for basic mathematical operations, assignment operators are used for assignment and addition, subtraction, multiplication and division assignment, condition operators are used for different operations according to conditions, logical operators are used for logical operations, bit operators are used for bit-level operations, and special constants are used to represent null pointers, end-of-file markers, and non-numeric values.

How to handle special characters in C language How to handle special characters in C language Apr 03, 2025 pm 03:18 PM

In C language, special characters are processed through escape sequences, such as: \n represents line breaks. \t means tab character. Use escape sequences or character constants to represent special characters, such as char c = '\n'. Note that the backslash needs to be escaped twice. Different platforms and compilers may have different escape sequences, please consult the documentation.

How to use char array in C language How to use char array in C language Apr 03, 2025 pm 03:24 PM

The char array stores character sequences in C language and is declared as char array_name[size]. The access element is passed through the subscript operator, and the element ends with the null terminator '\0', which represents the end point of the string. The C language provides a variety of string manipulation functions, such as strlen(), strcpy(), strcat() and strcmp().

Advanced C# .NET: Concurrency, Parallelism, and Multithreading Explained Advanced C# .NET: Concurrency, Parallelism, and Multithreading Explained Apr 03, 2025 am 12:01 AM

C#.NET provides powerful tools for concurrent, parallel and multithreaded programming. 1) Use the Thread class to create and manage threads, 2) The Task class provides more advanced abstraction, using thread pools to improve resource utilization, 3) implement parallel computing through Parallel.ForEach, 4) async/await and Task.WhenAll are used to obtain and process data in parallel, 5) avoid deadlocks, race conditions and thread leakage, 6) use thread pools and asynchronous programming to optimize performance.

How to convert char in C language How to convert char in C language Apr 03, 2025 pm 03:21 PM

In C language, char type conversion can be directly converted to another type by: casting: using casting characters. Automatic type conversion: When one type of data can accommodate another type of value, the compiler automatically converts it.

Avoid errors caused by default in C switch statements Avoid errors caused by default in C switch statements Apr 03, 2025 pm 03:45 PM

A strategy to avoid errors caused by default in C switch statements: use enums instead of constants, limiting the value of the case statement to a valid member of the enum. Use fallthrough in the last case statement to let the program continue to execute the following code. For switch statements without fallthrough, always add a default statement for error handling or provide default behavior.

See all articles