


A brief introduction to generators and iterators in Python (with examples)
This article brings you a brief introduction to generators and iterators in Python (with examples). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Iterator
In Python, if an object can be looped (traversed) the process of each element in the object is called iteration. For example, dictionary, string, list, tuple, set, etc. The reason why they can be iterated is that they all have a common built-in function __iter__. By executing the __next__ function of a built-in object, all elements of the object can be printed in sequence. For example, there is a list that stores values from 1-100, but we only want to print the first 50 elements.
flag=True l=[x for x in range(1,101)] l_iter = l.__iter__() while flag: try: item=l_iter.__next__() if item==51: flag=False break else: print(item) except: break
In the While loop, the iterator will always loop to execute the __next__() function, but the iterator itself does not know how many elements it wants to iterate. When the last element is executed, the __next__() function will continue to be executed, but at this time there are no elements that can be iterated. Since the iterator cannot find the element that can be iterated, an error will be reported. Therefore, when we use the while loop, we use it together with the exception catching code try except. When an exception occurs during the iteration process, the next loop will be automatically stopped.
Generator:
Suppose we have a requirement. Except for the first and second elements, the other elements are the sum of the first two elements.
We can write like this
def fib1(max): n,a,b=0,0,1 while n<max: print(b) a,b=b,a+b n=n+1 return 'done' a=fib1(5) print(a)
The output result
1 1 2 3 5 done
The derivation process is as shown in the figure
Use another method
def fib2(max): n,a,b=0,0,1 while n<max: yield b a,b=b,a+b n=n+1 return 'done'
Call this function
a=fib2(5) print(a)
Output result 1
At this time we found , the results cannot be displayed directly as before. The fib defined at this time is not a simple function, but is transformed into a generator. If you want to know the generated results, you can execute the __next__ function in sequence, but only one result will be returned each time. An exception will be thrown when there are no more elements that can be iterated.
In addition, we can also use for loop and while (need to be used with try except) to print the results.
a=fib2(5) for c in a: print(c)
Show output results 1 1 2 3 5.
Benefits of using generators: Generators calculate the next element based on the derivation process. Let’s look at the first two functions fib1 and fib2. fib1 opens up a fixed memory space in the computer to store the complete calculation results. However, if we want to access a certain element in the calculation results, we need to traverse the entire calculation results first. We can get the results we want through object subscripts or using for loops and if conditional judgments. This can achieve our needs, but it will consume more memory space. fib2 calculates the next element based on the inference process, so we can get the element we want before creating the complete object. Thereby reducing memory consumption.
The above is the detailed content of A brief introduction to generators and iterators in Python (with examples). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

The key to running Jupyter Notebook in VS Code is to ensure that the Python environment is properly configured, understand that the code execution order is consistent with the cell order, and be aware of large files or external libraries that may affect performance. The code completion and debugging functions provided by VS Code can greatly improve coding efficiency and reduce errors.
