


A brief introduction to the json module and pickle module in Python (with examples)
This article brings you a brief introduction to the json module and pickle module in Python (with examples). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
The json module and pickle in Python are both used for serialization and deserialization of data. They provide the same methods: dumps, dump, loads, load
dumps(obj): Serialize the object to str.
dump(obj, fp): Serialize the object to str and store it in the file.
- loads(s):
Deserialize the (serialized) string into a Python object.
load(fp): - Deserialize the (serialized) string
in the file into a Python object. Although the json and pickle modules are both used for serialization and deserialization of data, there are still many
differences between them, or each has its own differences Each
:
Universality:- The string after json serialization is in a universal format (ordinary string) Different platforms and languages can be recognized in , but the pickle-serialized string can only be recognized by Python (Python dedicated serialization module)
-
Processed data types:
The objects that json can serialize are only the basic data types in Python, while pickle can serialize all data types in Python. -
Processed data type:
The string after json serialization is text type (you can also understand it after opening the file with Notepad or printing it with print content), and the string serialized by pickle is binary stream data (the content inside is completely incomprehensible after opening Notepad or printing). Therefore, when performing file operations, pay attention to which module is used and whether it needs to be opened in b format. -
Used space:
json requires smaller storage space, while pickle requires larger storage space. The following is a simple example of pickle file operation:
>>> import pickle >>> dic = {'a': 111, 'b': 222, 'c': 333} >>> f = open('D:/pk_file.pk', 'wb') >>> lst = [1, 2, 4, 5] >>> # 将字典对象和列表对象序列化,并存入文件,文件名后缀自定义为.pk >>> pickle.dump(dic, f) >>> pickle.dump(lst, f) >>> f.close() >>> # 将文件中的Python对象按写入顺序读取出来,且一次读取一个对象 >>> pk_f = open('D:/pk_file.pk', 'rb') >>> result = pickle.load(pk_f) >>> type(result) <class 'dict'> >>> result {'a': 111, 'b': 222, 'c': 333} >>> other_result = pickle.load(pk_f) >>> type(other_result) <class 'list'> >>> other_result [1, 2, 4, 5] >>>
The above is the entire content of this article, For more exciting content about python, you can pay attention to the
Python video tutorialand
python article tutorialcolumns on the PHP Chinese website! ! !
The above is the detailed content of A brief introduction to the json module and pickle module in Python (with examples). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.
