Introduction to the usage of Memoization in JavaScript (code)
This article brings you an introduction to the usage of Memoization in JavaScript (code). It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
memoization comes from the Latin memorandum ("to be remembered"), not to be confused with memorization.
First, let’s take a look at the description from Wikipedia:
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls and returning the cached result when the same inputs occur again.Simply put, memoization is an optimization technique mainly used to speed up computer programs by storing the results of expensive function calls and returning the cached results when the same inputs occur again.
This article first introduces a simple example of using memoization optimization technology, and then interprets the source code of using memoization in the underscore and reselect libraries to deepen understanding.
Factorial
Without using memoization
Without thinking, we will immediately write the following code:
const factorial = n => { if (n === 1) { return 1 } else { return factorial(n - 1) * n } };
Use memoization
const cache = [] const factorial = n => { if (n === 1) { return 1 } else if (cache[n - 1]) { return cache[n - 1] } else { let result = factorial(n - 1) * n cache[n - 1] = result return result } };
Using closures and memoization
The common way is to use closures and memoization together:
const factorialMemo = () => { const cache = [] const factorial = n => { if (n === 1) { return 1 } else if (cache[n - 1]) { console.log(`get factorial(${n}) from cache...`) return cache[n - 1] } else { let result = factorial(n - 1) * n cache[n - 1] = result return result } } return factorial }; const factorial = factorialMemo();
Continuing to deform, the following writing method is the most common form.
const factorialMemo = func => { const cache = [] return function(n) { if (cache[n - 1]) { console.log(`get factorial(${n}) from cache...`) return cache[n - 1] } else { const result = func.apply(null, arguments) cache[n - 1] = result return result } } } const factorial = factorialMemo(function(n) { return n === 1 ? 1 : factorial(n - 1) * n });
From this example of factorial, we can know that memoization is a method of exchanging space for time. It stores the execution results. The next time the same input occurs, the results will be directly output, which improves the execution speed.
underscore The memoization in the source code
// Memoize an expensive function by storing its results. _.memoize = function(func, hasher) { var memoize = function(key) { var cache = memoize.cache; var address = '' + (hasher ? hasher.apply(this, arguments) : key); if (!_.has(cache, address)) cache[address] = func.apply(this, arguments); return cache[address]; }; memoize.cache = {}; return memoize; };
The code is clear at a glance. Using _.memoize to implement factorial is as follows:
const factorial = _.memoize(function(n) { return n === 1 ? 1 : factorial(n - 1) * n });
Refer to this source code, the factorial above It can continue to be transformed as follows:
const factorialMemo = func => { const memoize = function(n) { const cache = memoize.cache if (cache[n - 1]) { console.log(`get factorial(${n}) from cache...`) return cache[n - 1] } else { const result = func.apply(null, arguments) cache[n - 1] = result return result } } memoize.cache = [] return memoize } const factorial = factorialMemo(function(n) { return n === 1 ? 1 : factorial(n - 1) * n });
reselect memoization in the source code
export function defaultMemoize(func, equalityCheck = defaultEqualityCheck) { let lastArgs = null let lastResult = null // we reference arguments instead of spreading them for performance reasons return function () { if (!areArgumentsShallowlyEqual(equalityCheck, lastArgs, arguments)) { // apply arguments instead of spreading for performance. lastResult = func.apply(null, arguments) } lastArgs = arguments return lastResult } };
From the source code, we can know that when lastArgs is the same as arguments, func will not be executed again.
Summary
memoization is an optimization technology that avoids unnecessary repeated calculations and can improve calculation speed.
The above is the detailed content of Introduction to the usage of Memoization in JavaScript (code). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

Usage: In JavaScript, the insertBefore() method is used to insert a new node in the DOM tree. This method requires two parameters: the new node to be inserted and the reference node (that is, the node where the new node will be inserted).

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Introduction to the method of obtaining HTTP status code in JavaScript: In front-end development, we often need to deal with the interaction with the back-end interface, and HTTP status code is a very important part of it. Understanding and obtaining HTTP status codes helps us better handle the data returned by the interface. This article will introduce how to use JavaScript to obtain HTTP status codes and provide specific code examples. 1. What is HTTP status code? HTTP status code means that when the browser initiates a request to the server, the service
