This article brings you an introduction to three methods of implementing WordCount. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
1. Streamlined Shell
cat /home/sev7e0/access.log | tr -s ' ' '\n' | sort | uniq -c | sort -r | awk '{ print $2, $1}'
#cat command displays the text content at one time
#tr -s ' ' '\n' Replaces the spaces in the text with the Enter key
#sort Sorts all specified files in series and writes the results to standard output.
#uniq -c Filters adjacent matching lines from the input file or standard input and writes them to the output file or standard output. -c adds a prefix number indicating the number of occurrences of the corresponding line before each line
#sort | uniq -c Used at the same time to count the number of occurrences
#sort -r Arrange the results in reverse order
#awk '{print $2,$1}' Output the results, with the text in front and the count in the back
2. Anti-human MapReduce
//mapreduce方式 public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); // conf.set("fs.defaultFS", "hdfs://spark01:9000"); // conf.set("yarn.resourcemanager.hostname", "spark01"); Path out = new Path(args[1]); FileSystem fs = FileSystem.get(conf); //判断输出路径是否存在,当路径存在时mapreduce会报错 if (fs.exists(out)) { fs.delete(out, true); System.out.println("ouput is exit will delete"); } // 创建任务 Job job = Job.getInstance(conf, "wordcountDemo"); // 设置job的主类 job.setJarByClass(WordCount.class); // 主类 // 设置作业的输入路径 FileInputFormat.setInputPaths(job, new Path(args[0])); //设置map的相关参数 job.setMapperClass(WordCountMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); //设置reduce相关参数 job.setReducerClass(WordCountReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); //设置作业的输出路径 FileOutputFormat.setOutputPath(job, out); job.setNumReduceTasks(2); System.exit(job.waitForCompletion(true) ? 0 : 1); }
3. Easy-to-use spark
//spark版wordcount sc.textFile("/home/sev7e0/access.log").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).foreach(println(_))
The above is the detailed content of Introduction to three methods to implement WordCount. For more information, please follow other related articles on the PHP Chinese website!